openSUSE

11.4

| [g N R A ol il e T la o catal o

System Analysis and Tuning Guide

Copyright © 20062011 Novell, Inc. u Coobiectso. Bee npasa 3ammineHsl.

Paspernaercss KONMPOBaTh, PACIPOCTPAHSATH W/HUIIK U3MEHSATh 3TOT JOKYMEHT B COOTBETCTBHH C
ycnoBusimu GNU Free Documentation License, Bepcuu 1.2 wm (Ha Bame ycmoTpenue) Bepcun
1.3; ¢ 00s13aTeNIbHBIM YKa3aHUEM 3TOrO yBeJIOMIIEHHsI 00 aBTOPCKOM IpaBe U jinieH3u. Korus
yuens3ud Bepcu 1.2 BkmoueHa B paszgen “GNU Free Documentation License”.

Jlnst Toproeeix Mapok Novell o6paturecs k criicky Novell Trademark u Service Mark http: //
www.novell.com/company/legal/trademarks/tmlist.html . Linux*

- 3aperucTpupoBaHHas Toprosas Mapka Jlunyca Topsanbica. Bce ToBapHble MapKu TpeTbux

JIMIY SIBJISIIOTCS] COOCTBEHHOCTBIO MX BJiaziesiblieB. 3Haku (®, ™ u apyrue) UCrosb3y0TCs ISt
00o03HaueHUs ToproBuix Mapok Novell; 3Be3104koii (*) 0003HaUYEHbI TOBAPHBIE MAPKU TPETHUX JIUII.

Best naopmaiys B 3TOi KHUre Oblila COCTaBJIeHA C IPe/ieIbHBIM BHUMaHUEM K jetasism. OnHako,
3TO He rapaHTupyeT abcomotHoit Tounocti. Hu aBropst u3 Novell, Inc., SUSE LINUX Products
GmbH, HU NepeBOJUMKH, HE HECYT OTBETCTBEHHOCTH 32 BO3BMOKHbIE OIIMOKHU U UX HOCIEACTBHSI.

http://www.novell.com/company/legal/trademarks/tmlist.html
http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

About This Guide

Part |

Basics

1 General Notes on System Tuning

— — — —
Moo=

Part Il

Be Sure What Problemto Solve 3
Rule Out Common Problems ¢ 4
Finding the Bottleneck L. 4
Step-by-step Tuningo 5

System Monitoring

2 System Monitoring Utilities

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.1

3.1
3.2
3.3
3.4
3.5
3.6

41
4.2
4.3
4.4

Part Il

5.1
5.2

Multi-Purpose Tools 9
System Information L. Lo 17
Processes Lo Lo 22
Memory L e 27
Networking 30
The /proc File System 32
Hardware Information 35
Files and File Systems 37
User Informationo 39
TimeandDate 40
Graph Your Data: RRDtool 41

3 Monitoring with Nagios
Features of Nagios 47
Installing Nagios 47
Nagios Configuration Files 48
Configuring Nagios 51
Troubleshootingo 54
For More Informationo 55

4 Analyzing and Managing System Log Files
System Log Files in /var/log/ 57
Viewing and Parsing Log Files 60
Managing Log Files with logrotate 60
Monitoring Log Files with logwatch 61
Kernel Monitoring

5 SystemTap—Filtering and Analyzing System Data
Conceptual Overviewo 68
Installation and Setupo oL 71
Script Syntax Lo 81

5.3
5.4

Example Scripto Lo 88

47

57

65

67

About This Guide

openSUSE is used for a broad range of usage scenarios in enterprise and scientific
data centers. Novell has ensured openSUSE is set up in a way that it accommodates
different operation purposes with optimal performance. However, openSUSE

must meet very different demands when employed on a number crunching server
compared to a file server, for example.

Generally it is not possible to ship a distribution that will by default be optimized
for all kinds of workloads. Due to the simple fact that different workloads vary
substantially in various aspects—most importantly I/O access patterns, memory
access patterns, and process scheduling. A behavior that perfectly suits a certain
workload might t reduce performance of a completely different workload (for
example, I/O intensive databases usually have completely different requirements
compared to CPU-intensive tasks, such as video encoding). The great versatility of
Linux makes it possible to configure your system in a way that it brings out the best
in each usage scenario.

This manual introduces you to means to monitor and analyze your system. It
describes methods to manage system resources and to tune your system. This guide
does not offer recipes for special scenarios, because each server has got its own
different demands. It rather enables you to thoroughly analyze your servers and make
the most out of them.

General Notes on System Tuning
Tuning a system requires a carefully planned proceeding. Learn which steps are
necessary to successfully improve your system.

Part II, “System Monitoring” (page 7)
Linux offers a large variety of tools to monitor almost every aspect of the
system. Learn how to use these utilities and how to read and analyze the system
log files.

Part III, “Kernel Monitoring” (page 65)
The Linux kernel itself offers means to examine every nut, bolt and screw of the
system. This part introduces you to SystemTap, a scripting language for writing
kernel modules that can be used to analyze and filter data. Collect debugging
information and find bottlenecks by using kernel probes and use perfmon2 to
access the CPU's performance monitoring unit. Last, monitor applications with
the help of Oprofile.

Part IV, “Resource Management” (page 117)
Learn how to set up a tailor-made system fitting exactly the server's need. Get
to know how to use power management while at the same time keeping the
performance of a system at a level that matches the current requirements.

Part V, “Kernel Tuning” (page 149)
The Linux kernel can be optimized either by using sysctl or via the /proc file
system. This part covers tuning the I/O performance and optimizing the way
how Linux schedules processes. It also describes basic principles of memory
management and shows how memory management could be fine-tuned to suit
needs of specific applications and usage patterns. Furthermore, it describes how
to optimize network performance.

Part VI, “Handling System Dumps” (page 183)
This part enables you to analyze and handle application or system crashes. It
introduces tracing tools such as strace or Itrace and describes how to handle
system crashes using Kexec and Kdump.

TIP: Getting the SUSE Linux Enterprise SDK

Some programs or packages mentioned in this guide are only available
from the SUSE Linux Enterprise SDK. The SDK is an add-on product for
openSUSE and is available for download from http://developer
.novell.com/wiki/index.php/SUSE_LINUX_SDK

Many chapters in this manual contain links to additional documentation resources.
This includes additional documentation that is available on the system as well as
documentation available on the Internet.

For an overview of the documentation available for your product and the

latest documentation updates, refer to http://www.novell.com/
documentation or to the following section:

1 HocTynHasa poKyMmeHTauus

Mp1 npegocrasisieM HTML u PDF-Bepcuun Hammx KHAT Ha pa3HbIX s3bIKax. s
JaHHOTO TUCTPUOYTHUBA JOCTYITHBI CJISAYIONHE PYKOBOACTBA [UIsl MIOJIb30BaTe el 1
aJIMUHUCTPATOPOB:

vi System Analysis and Tuning Guide

http://developer.novell.com/wiki/index.php/SUSE_LINUX_SDK
http://developer.novell.com/wiki/index.php/SUSE_LINUX_SDK
http://www.novell.com/documentation
http://www.novell.com/documentation

Berymenue (TBerymienue)
PykoBoacTBo 1mar 3a marom nposseeT Bac yepe3 ycraHoBky openSUSE ¢
DVD unu u3 ISO-06pa3za, gacT kpaTkoe BBeJIeHHE B OKPYX)KEHUS pabodero
crona GNOME u KDE, BkJ1104asi HEKOTOpBIE KJIIOUEBbIE IPUIOKEHH. Takxke
no3Hakomut ¢ LibreOffice 1 ero MomyisiMul 1Jis1 CO3aHUSI TEKCTA CO CJI0KHBIM
(opmatupoBaHmem, pabOTHI C SNEKTPOHHBIMU TAOJIHMIIAMU WU CO3IAHUS TPpadUKu
Y TIpe3eHTaluil.

Reference (TReference)
Hact Bam obmiee mornManue padotsl openSUSE, 3atparmBas 3agaun
MPOABUHYTOI0 CUCTEMHOI'0 aMUHKCTpUpoBaHus. Ero marepuai npeaHasHaueH B
MIEPBYIO OYepeb)il CUCTEMHBIX aIMUHUCTPATOPOB U IOMAIHUX MOJIb30BaTeNe!,
o6aannmx 6a30BbIMUA HABBIKAMU aMUHKUCTpUpOBaHus. CONepKUT AETATbHYIO
MH(OPMAIIMIO O MPOABUHYTHIX BAPMAHTAX pa3BepThIBaHUSI, aIMUHUCTPUPOBAHUS,
B3aMMO/ICHICTBHUS KJIIOYEBbIX KOMIIOHEHTOB M HACTPOIKE PA3IUYHBIX CETEBBIX U
(paiinoBrix ciyx6 openSUSE.

PykoBoICTBO 10 6€30MacHOCTH (TPYKOBOILCTBO 110 6E301MaCHOCTH)
OnKCHBAKTCS OCHOBHBIE TIOHATHSI CUCTEMBI O€30IIaCHOCTH, OXBATHIBAIOIIIECH
KakK JIOKaJIbHbIE, TaK U ceTeBhIe acneKThl. IToka3pIBaeTCs, Kak MCIOJIb30BaTh
TaKue yTUINTHI AJ1s1 oOecriedeHns ceTeBoi Oe3omnacHocTH, kak Novell AppArmor
(KoTopasi TO3BOJISIET ONPE/ICTUTh K KaKuM haiiyiaM 3ajaHHas Tiporpamma OyaeT
VMMETh JOCTYI Ha 3alKCh, YTEHUE WY BBITIOJHEHNE) WM CUCTEMa ayIuTa,
KOTOpasi TIIATEeJbHO coOrpaeT HH(POPMALIUIO O COOBITHSIX, TAK WA UHAYE
CBSI3aHHBIX C OOECIeYeHHEM HaJIIeKaIlero YpoBHs O€30MacHOCTH CUCTEMBI.

System Analysis and Tuning Guide (page 1)
PykoBoncTBO agsMHHHCTpaTOpa IO OOHAPYKEHHIO IPOOJIeM, MX pa3pelleHre 1
ontuMu3anus padoTsl. B Hem HaiieTcs nHpOpMaLus 0 TOM, Kak IPOBEPUTh U
OINTUMHU3UPOBATh PabOTY CHCTEMBI C TIOMOIIBIO CTIENNATbHBIX HHCTPYMEHTOB,
3(ppeKTUBHO YIPABJIATH ee pecypcamu. Takke B HEM COIEPKUTCS 0030p OOIIUX
npo6JIeM 1 X pelleHnH, a TaKKe JOTOJTHUTEIbHbIE CIIPABOYHBIE MAaTEPUATBI 1
0030p JOCTYIHBIX PECYPCOB.

Bupryamuzauus ¢ KVM (TBupryamuzauus ¢ KVM)
JlaHHOE pYKOBOJCTBO IpeJJlaraeT KpaTkoe ONUCaHue HACTPOMKYU U yIIPaBJICHUS
cuctemMon Buptyanusanun Ha 6aze KVM (Kernel-based Virtual Machine)
B openSUSE. Takxe nokasbiBaercs, Kak ynpasiste VM Guest ¢ HOMOIIBIO
libvirt u QEMU.

About This Guide vii

Bonbmmnacreo HTML-Bepcuit pyKOBOJCTB B YCTAHOBJIEHHON CUCTEME MOKHO HAalTH
o agpecy /usr/share/doc/manual WX B CIPaBOYHOM IIeHTpe Bamiero
OKpy:xeHust paboyero crona. [TociiesHre OOHOBIEHUS JOKYMEHTAIMH JIOCTYITHBI

no agpecy http://www.novell.com/documentation , TIe MOXHO
3arpy3uts B PDF nnn HTML-Bepcuu pykoBoacTs ais Baiero npogykra.

2 ObparHasi cCBfAi3b

HeKOTOpI)Ie 13 NOCTYIIHBIX KaHAJIOB O6paTHOfI CBA3U:

Bugs and Enhancement Requests
Uto6bl cOOOUTUTH 00 OLIMOKE MIIM OTHPABHUTH 3aMIPOC 00 YIyUIICHUH,
noxainyiicra, ucrnonb3yire https://bugzilla.novell.com/ o
omOOK B JOKYMEHTAIIMK OTIIpaBbTe Bai oryer ajist komnoneHra Documentation
IUTSI COOTBETCTBYIOYIIIETO TIPOAYKTA.

Ecmm Bot moxo 3nakoMsl ¢ Bugzilla, To Bam MOTyT OBITh TIOJIE3HBIE STHM CTaThH:

e http://ru.opensuse.org/openSUSE:CoobuuTs_06
_omubxe

e http://ru.opensuse.org/openSUSE:Bug_reporting
_FAQ

KomMmeHnTapuu nosnp3oBartene
Mp1 XOTUM yeTpImath Bamm koMMeHTapun U TIPeIIoKeHUsT 00 9TOM PyKOBOJICTBE
Y IpYTO¥ TOKyMEHTAINH, TIOCTaBIsIeMOM C JaHHBIM MpoayKToM. Mcronb3yiite
(pyHKIIMIO KOMMEHTapHeB NOJIb30BaTe el B HKHEHN YacTH KaKI0i CTpaHULbI B
OHJIAalIH-JJOKYMEHTAIIMY WM TIepefInTe 1o CChlIke http://www.novell
.com/documentation/feedback.html U ocTaBbTe Barn
KOMMEHTapUH.

3 YcnoBHble 0603HaYeHUs

B 1aHHOM pYKOBOJICTBE UCTIOJB3YIOTCSA CAEAYIONINE TUIOrpaCKUE COTJIaIIeHUST:
* /etc/passwd : MMeHa KaTajoro u (aiyioB

® 34lOJIHHTEJb: 3dMCHA 3allONHHTE b HA (baKTI/I‘IeCKOC 3HAa4YCHHUE

viii System Analysis and Tuning Guide

http://www.novell.com/documentation
https://bugzilla.novell.com/
http://ru.opensuse.org/openSUSE:????????_??_??????
http://ru.opensuse.org/openSUSE:????????_??_??????
http://ru.opensuse.org/openSUSE:Bug_reporting_FAQ
http://ru.opensuse.org/openSUSE:Bug_reporting_FAQ
http://www.novell.com/documentation/feedback.html
http://www.novell.com/documentation/feedback.html

* PATH: nepeMeHHas okpyxeHus PATH
¢ 1ls, ——help: KOMaHIbl, ONLIHU U ITAPAMETPHI
* user: [0JIb30BATEIN UIIA TPYIIILI

» Alt, Alt + F1: kaBua wim KjIaBuaTypHast KOMOWHAIHS; HA3BaHUSI KJTABHII
MOKa3aHbl B BEPXHEM perucTpe, Kak Ha KJIaBuarype

* Qaiin, @aiin > Coxpanums Kax: IyHKTbl MEHIO, KHOTIKH

o Tanuyrowue nunzeunvt (I'nasa ITunzeunwt, TJIpyroe pyKoBOACTBO): 3TO CCHIIKA HA
IJaBy B JPyroM PyKOBOJCTBE.

4 O co3paHuM 3TOro pyKkoBoACTBa

Dra kHura OplIa co3nana B Novdoc, ocHoBaH Ha DocBook (cmotpute http: //
www . docbook.org). Ucxonubie XML-ailiibl MpoBepsIoTCs IporpaMMon
xmllint, obpadotanHble xsltproc u npeodpasoBannsiii B XSL-FO ¢
HCIIOJIb30BAHUEM CIICIMATM3UPOBAHHON Bepcun Tabimil cTiieit Hopmana Yoomma
(Norman Walsh). Koneunsiit PDF-aiin orpopmaruposan yepe3 XEP or RenderX.
WHCTpYMEHTHI C OTKPBITHIM UCXOIHBIM KOJIOM U Cpefia, UCTIONb3yeMast UTsl CO3aHMs
3TOrO PyKOBOJCTBA, JOCTYIHHI B MTakeTe susedoc, IMOCTaBIsSEMbIM B COCTaBE
openSUSE.

5 UcxopoHbIN KO,

Ucxonnsiii kox openSUSE Haxoputcsi B OTKPBITOM gocTyrie. YToObl ero 3arpy3uTs,
BBINIOJIHUTE cieayollee: http://ru.opensuse.org/Portal:
IucTpubytus/BosMoxHocTH . Ecin norpedyercss — Mbl MOXEM OTHPABUTh
ucxomHple koAbl Ha DVD. Mu1 6epem $15 nm €15 3a 3anuch, yakoBKY U TOCTaBKY
auckoB. YtoOs! 3arpocutsh DVD ¢ HCXOIHBIM KOJIOM, OTIIpaBbTe e-mail Ha
371eKTpOHHBIH aapec sourcedvd @suse.de [mailto:sourcedvd@suse.de]
WK OOBIYHOE MIHCHMO:

SUSE Linux Products GmbH
Product Management
openSUSE

Maxfeldstr. 5

About This Guide ix

http://www.docbook.org
http://www.docbook.org
http://ru.opensuse.org/Portal:???????????/???????????
http://ru.opensuse.org/Portal:???????????/???????????
mailto:sourcedvd@suse.de

D-90409 Nirnberg
Germany

6 bnarogapHocTu

Pazpa6oTunku Linux coTpyIHUYAIOT C OTPOMHBIM YHCIOM JOOPOBOJIBIEB IO BCEMY
MHpY, YTOOBI CIIOCOOCTBOBATH pa3BUTHIO Linux. Ml GJ1arofiaHbl MM 3a MPUJIOKESHHbIE
YCHIIAS — 3TOT JUCTPUOYTHUB He CyIecTBOBaM Obl 6e3 Hux. Kpome Toro, Mel
onarogapum Ppanka 3anma (Frank Zappa) u [Taap (Pawar). Ocobas 61aronapHocTb,
KOHEYHO ke, Beipaxaercs Jluaycy Topsanbacy (Linus Torvalds).

Cnacubo BceM KTO MNPUHAIT Y4aCTHE B IIOATOTOBKE IMI€PEBOAA JAHHOIO PYKOBOACTBA!

Anexcannp Haymos
alexander_naumov @opensuse.org

Amnppeii Kapernun
egdfree @opensuse.org

AmntoHn YepkacoB
linux-oid @opensuse.org

Bopuc Baccepman
natabor2004 @ gmail.com

Bukrop [JyonHiok
victor.dubiniuk @ gmail.com

Hunap Banees
kOda@opensuse.org

[TaBen Acraxos
pastakhov@yandex.ru

Have a lot of fun!

Bamra komanga SUSE

x System Analysis and Tuning Guide

Part |. Basics

General Notes on System
Tuning

This manual discusses how to find the reasons for performance problems and
provides means to solve these problems. Before you start tuning your system, you
should make sure you have ruled out common problems and have found the cause
(bottleneck) for the problem. You should also have a detailed plan on how to tune the
system, because applying random tuning tips will not help (and could make things
worse).

Procedure 1.1 General Approach When Tuning a System

1 Be sure what problem to solve
2 Rule out common problems

3 Find the bottleneck

3a Monitor the system and/or application
3b Analyze the data

4 Step-by-step tuning

1.1 Be Sure What Problem to Solve

Before you start tuning your system, try to describe the problem as exactly as
possible. Obviously, a simple and general “The system is too slow!” is no helpful

General Notes on System Tuning 3

problem description. If you plan to tune your Web server for faster delivery of static
pages, for example, it makes a difference whether you need to generally improve the
speed or whether it only needs to be improved at peak times.

Furthermore, make sure you can apply a measurement to your problem, otherwise
you will not be able to control if the tuning was a success or not. You should always
be able to compare “before” and “after”.

1.2 Rule Out Common Problems

A performance problem often is caused by network or hardware problems, bugs, or
configuration issues. Make sure to rule out problems such as the ones listed below
before attempting to tune your system:

* Check /var/log/warn and /var/log/messages for unusual entries.

* Check (using top or ps) whether a certain process misbehaves by eating up
unusual amounts of CPU time or memory.

* Check for network problems by inspecting /proc/net/dev

* In case of I/O problems with physical disks, make sure it is not caused by
hardware problems (check the disk with the smartmontools) or by a full disk.

* Ensure that background jobs are scheduled to be carried out in times the server
load is low. Those jobs should also run with low priority (set via nice).

* If the machine runs several services using the same resources, consider moving
services to another server.

* Last, make sure your software is up-to-date.

1.3 Finding the Bottleneck

Finding the bottleneck very often is the hardest part when tuning a system.
openSUSE offers a lot of tools helping you with this task. See Part II, “System
Monitoring” (page 7) for detailed information on general system monitoring
applications and log file analysis. If the problem requires a long-time in-depth

4 System Analysis and Tuning Guide

analysis, the Linux kernel offers means to perform such analysis. See Part III,
“Kernel Monitoring” (page 65) for coverage.

Once you have collected the data, it needs to be analyzed. First, inspect if the server's
hardware (memory, CPU, bus) and its I/O capacities (disk, network) are sufficient. If
these basic conditions are met, the system might benefit from tuning.

1.4 Step-by-step Tuning

Make sure to carefully plan the tuning itself. It is of vital importance to only do one
step at a time. Only by doing so you will be able to measure if the change provided
an improvement or even had a negative impact. Each tuning activity should be
measured over a sufficient time period in order to ensure you can do an analysis
based on significant data. If you cannot measure a positive effect, do not make the
change permanent. Chances are, that it might have a negative effect in the future.

General Notes on System Tuning 5

Part Il. System Monitoring

System Monitoring Utilities

There are number of programs, tools, and utilities which you can use to examine the
status of your system. This chapter introduces some of them and describes their most
important and frequently used parameters.

For each of the described commands, examples of the relevant outputs are presented.
In the examples, the first line is the command itself (after the > or # sign prompt).
Omissions are indicated with square brackets ([. . .]) and long lines are wrapped
where necessary. Line breaks for long lines are indicated by a backslash (\).

command -x -y

output line 1

output line 2

output line 3 is annoyingly long, so long that \
we have to break it

output line 3

[...]

output line 98

output line 99

The descriptions have been kept short so that we can include as many utilities as
possible. Further information for all the commands can be found in the manual
pages. Most of the commands also understand the parameter ——he 1p, which
produces a brief list of possible parameters.

2.1 Multi-Purpose Tools

While most of the Linux system monitoring tools are specific to monitor a certain
aspect of the system, there are a few “swiss army knife” tools showing various

System Monitoring Utilities 9

aspects of the system at a glance. Use these tools first in order to get an overview and
find out which part of the system to examine further.

2.1.1 vmstat

vmstat collects information about processes, memory, I/O, interrupts and CPU. If
called without a sampling rate, it displays average values since the last reboot. When
called with a sampling rate, it displays actual samples:

Example 2.1 vinstat Output on a Lightly Used Machine

tux@mercury:~> vmstat -a 2

procs ———-—————-—--— Memory-———-—-———— ——=— swap-- ———--— io---- -system—- -———- cpu-—-—----
r b swpd free inact active si so bi bo in cs us sy 1id wa st
0 0 0 750992 570648 548848 0 0 0 1 8 9 0 0100 0 O
0 0 0 750984 570648 548912 0 0 0 63 48 0 99 0
0 0 0 751000 570648 548912 0 0 0 0 55 47 0 0100 0 O
0 0 0 751000 570648 548912 0 0 0 0 56 50 0 0 100 0O O
0 0 0 751016 570648 548944 0 0 0 0 57 50 0 0 100 0O O
Example 2.2 vinstat Output on a Heavily Used Machine (CPU bound)
tux@mercury:~> vmstat 2

procs ———-——————-- MemoOry-———-—-——-—= —=—— swap-- ————— io---- -system—— —-———— cpu-—-———--—
r b swpd free buff cache si so bi bo in cs us sy id wa st
32 1 26236 459640 110240 6312648 0 0 9944 2 4552 6597 95 5 0 0O O
23 1 26236 396728 110336 6136224 0 0 9588 0 4468 6273 94 6 0 0 O
35 0 26236 554920 110508 6166508 0 0 7684 27992 4474 4700 95 5 0O O O
28 0 26236 518184 110516 6039996 0 0 10830 4 4446 4670 94 6 0 0 O
21 5 26236 716468 110684 6074872 0 0 8734 20534 4512 4061 96 4 0 O O

TIP

The first line of the vmstat output always displays average values since the
last reboot.

The columns show the following:

Shows the amount of processes in the run queue. These processes are waiting
for a free CPU slot to be executed. If the number of processes in this column is
constantly higher than the number of CPUs available, this is an indication for
insufficient CPU power.

10 System Analysis and Tuning Guide

Shows the amount of processes waiting for a resource other than a CPU. A high
number in this column may indicate an I/O problem (network or disk).

swpd
The amount of swap space (KB) currently used.

free
The amount of unused memory (KB).

inact
Recently unused memory that can be reclaimed. This column is only visible
when calling vmstat with the parameter —a (recommended).

active
Recently used memory that normally does not get reclaimed. This column is
only visible when calling vmstat with the parameter —a (recommended).

buff
File buffer cache (KB) in RAM. This column is not visible when calling
vmstat with the parameter —a (recommended).

cache
Page cache (KB) in RAM. This column is not visible when calling vimstat with
the parameter —a (recommended).

cache
Page cache (KB) in RAM. This column is not visible when calling vmstat with
the parameter —a (recommended).

Si
Amount of data (KB) that is moved from RAM to swap per second. High values
over a longer period of time in this column are an indication that the machine
would benefit from more RAM.

S0
Amount of data (KB) that is moved from swap to RAM per second. High values
over a longer period of time in this column are an indication that the machine
would benefit from more RAM.

bi
Number of blocks per second received from a block device (e.g. a disk read).
Note that swapping also impacts the values shown here.

System Monitoring Utilities 11

bo

in

CcS

us

sy

id

wa

st

Number of blocks per second sent to a block device (e.g. a disk write). Note that
swapping also impacts the values shown here.

Interrupts per second. A high value indicates a high I/O level (network and/or
disk).

Number of context switches per second. Simplified this means that the kernel
has to replace executable code of one program in memory with that of another
program.

Percentage of CPU usage from user processes.

Percentage of CPU usage from system processes.

Percentage of CPU time spent idling. If this value is zero over a longer period of
time, your CPU(s) are working to full capacity. This is not necessarily a bad sign
—rather refer to the values in columns r and b to determine if your machine is
equipped with sufficient CPU power.

If "wa" time is non-zero, it indicates throughput lost due to waiting for 1/O.

This may be inevitable, for example, if a file is being read for the first time,
background writeback cannot keep up, and so on. It can also be an indicator for
a hardware bottleneck (network or hard disk). A last, it can indicate a potential
for tuning the virtual memory manager (refer to Chapter 15, Tuning the Memory
Management Subsystem (page 171)).

Percentage of CPU time used by virtual machines.

See vmstat ——help for more options.

12 System Analysis and Tuning Guide

2.1.2 System Activity Information: sar and
sadc

sar can generate extensive reports on almost all important system activities, among
them CPU, memory, IRQ usage, 10, or networking. It can either generate reports

on the fly or query existing reports gathered by the system activity data collector
(sadc). sar and sadc both gather all their data from the /proc file system.

NOTE: sysstat Package

sar and sadc are part of sysstat package. You need to install the
package either with YaST, or with zypper in sysstat.

Automatically Collecting Daily Statistics With
sadc

If you want to monitor your system about a longer period of time, use sadc to
automatically collect the data. You can read this data at any time using sar. To start
sadc, simply run /etc/init.d/boot.sysstat start. This will add a link
to /etc/cron.d/ thatcalls sadc with the following default configuration:

e All available data will be collected.

* Datais writtento /var/log/sa/sa DD, where DD stands for the current
day. If a file already exists, it will be archived.

* The summary report is written to /var/log/sa/sar DD, where DD stands
for the current day. Already existing files will be archived.

* Data is collected every ten minutes, a summary report is generated every 6 hours
(see /etc/sysstat/sysstat.cron).

* The data is collected by the /usr/1ib64/sa/sal script (or /usr/
lib/sa/sal on 32bit systems)

* The summaries are generated by the script /usr/1ib64/sa/sa2 (or /
usr/lib/sa/sa2 on 32bit systems)

If you need to customize the configuration, copy the sal and sa?2 scripts and adjust
them according to your needs. Replace the link /etc/cron.d/sysstat

System Monitoring Utilities 13

with a customized copy of /etc/sysstat/sysstat.cron calling your
scripts.

Generating reports with sar

To generate reports on the fly, call sar with an interval (seconds) and a count. To
generate reports from files specify a filename with the option —f instead of interval
and count. If filename, interval and count are not specified, sar attempts to generate
areport from /var/log/sa/sa DD, where DD stands for the current day.

This is the default location to where sadc writes its data. Query multiple files with
multiple -f options.

sar 2 10 # on-the-fly report, 10 times every 2
seconds

sar —-f ~/reports/sar_2010_05_03 # queries file sar_2010_05_03

sar # queries file from today in /var/log/sa/
cd /var/log/sa &&\

sar —-f sa0l -f sa02 # queries files /var/log/sa/0[12]

Find examples for useful sar calls and their interpretation below. For detailed
information on the meaning of each column, please refer to the man (1) of sar.
Also refer to the man page for more options and reports—sar offers plenty of them.

CPU Utilization Report: sar

When called with no options, sar shows a basic report about CPU usage. On multi-
processor machines, results for all CPUs are summarized. Use the option —P ALL to
also see statistics for individual CPUs.

mercury:~ # sar 10 5

Linux 2.6.31.12-0.2-default (mercury) 03/05/10 _x86_64_ (2 CPU)
14:15:43 CPU Suser %nice $system $iowait $steal $idle
14:15:53 all 38.55 0.00 6.10 0.10 0.00 55.25
14:16:03 all 12.59 0.00 4.90 0.33 0.00 82.18
14:16:13 all 56.59 0.00 8.16 0.44 0.00 34.81
14:16:23 all 58.45 0.00 3.00 0.00 0.00 38.55
14:16:33 all 86.46 0.00 4.70 0.00 0.00 8.85
Average: all 49.94 0.00 5.38 0.18 0.00 44 .50

If the value for %iowait (percentage of the CPU being idle while waiting for I/O) is
significantly higher than zero over a longer period of time, there is a bottleneck in the
I/O system (network or hard disk). If the %idle value is zero over a longer period of
time, your CPU(s) are working to full capacity.

14 System Analysis and Tuning Guide

Memory Usage Report: sar -r
Generate an overall picture of the system memory (RAM) by using the option —r:

mercury:~ # sar -r 10 5
Linux 2.6.31.12-0.2-default (mercury) 03/05/10 _x86_64_ (2 CPU)

16:12:12 kbmemfree kbmemused %memused kbbuffers kbcached kbcommit %$commit

16:12:22 548188 1507488 73.33 20524 64204 2338284 65.10
16:12:32 259320 1796356 87.39 20808 72660 2229080 62.06
16:12:42 381096 1674580 81.46 21084 75460 2328192 64.82
16:12:52 642668 1413008 68.74 21392 81212 1938820 53.98
16:13:02 311984 1743692 84.82 21712 84040 2212024 61.58
Average: 428651 1627025 79.15 21104 75515 2209280 61.51

The last two columns (kbcommit and %commit) show an approximation of the total
amount of memory (RAM plus swap) the current workload would need in the worst
case (in kilobyte or percent respectively).

Paging Statistics Report: sar -B

Use the option —B to display the kernel paging statistics.

mercury:~ # sar -B 10 5
Linux 2.6.31.12-0.2-default (mercury) 03/05/10 _x86_64_ (2 CPU)

16:11:43 pgpgin/s pgpgout/s fault/s majflt/s pgfree/s pgscank/s pgscand/s pgsteal/s %vmeff

16:11:53 225.20 104.00 91993.90 0.00 87572.60 0.00 0.00 0.00 0.00
16:12:03 718.32 601.00 82612.01 2.20 99785.69 560.56 839.24 1132.23 80.89
16:12:13 1222.00 1672.40 103126.00 1.70 106529.00 1136.00 982.40 1172.20 55.33
16:12:23 112.18 77.84 113406.59 0.10 97581.24 35.13 127.74 159.38 97.86
16:12:33 817.22 81.28 121312.91 9.41 111442.44 0.00 0.00 0.00 0.00
Average: 618.72 507.20 102494.86 2.68 100578.98 346.24 389.76 492.60 66.93

The majflt/s (major faults per second) column shows how many pages are loaded
from disk (swap) into memory. A large number of major faults slows down the
system and is an indication of insufficient main memory. The %vmeff column shows
the number of pages scanned (pgscand/s) in relation to the ones being reused from
the main memory cache or the swap cache (pgsteal/s). It is a measurement of the
efficiency of page reclaim. Healthy values are either near 100 (every inactive page
swapped out is being reused) or O (no pages have been scanned). The value should
not drop below 30.

Block Device Statistics Report: sar -d
Use the option —d to display the block device (hdd, optical drive, USB storage

device, ...). Make sure to use the additional option —p (pretty-print) to make the DEV
column readable.

System Monitoring Utilities 15

mercury:~ # sar -d -p 10 5
Linux 2.6.31.12-0.2-default (neo) 03/05/10 _x86_64_ (2 CPU)

16:28:31 DEV tps rd_sec/s wr_sec/s avgrg-sz avgqu-sz await svctm Sutil
16:28:41 sdc 11.51 98.50 653.45 65.32 0.10 8.83 4.87 5.61
16:28:41 scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16:28:41 DEV tps rd_sec/s wr_sec/s avgrg-sz avgqu-sz await svctm Sutil
16:28:51 sdc 15.38 329.27 465.93 51.69 0.10 6.39 4.70 7.23
16:28:51 scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16:28:51 DEV tps rd_sec/s wr_sec/s avgrg-sz avgqu-sz await svctm Sutil
16:29:01 sdc 32.47 876.72 647.35 46.94 0.33 10.20 3.67 11.91
16:29:01 scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16:29:01 DEV tps rd_sec/s wr_sec/s avgrg-sz avgqu-sz await svctm Sutil
16:29:11 sdc 48.75 2852.45 366.77 66.04 0.82 16.93 4.91 23.94
16:29:11 scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16:29:11 DEV tps rd_sec/s wr_sec/s avgrg-sz avgqu-sz await svctm Sutil
16:29:21 sdc 13.20 362.40 412.00 58.67 0.16 12.03 6.09 8.04
16:29:21 scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average: DEV tps rd_sec/s wr_sec/s avgrg-sz avgqu-sz await svctm Sutil
Average: sdc 24.26 903.52 509.12 58.23 0.30 12.49 4.68 11.34
Average: scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

If your machine uses multiple disks, you will receive the best performance, if
I/0O requests are evenly spread over all disks. Compare the Average values for
tps, rd_sec/s, and wr_sec/s of all disks. Constantly high values in the svctm and
Youtil columns could be an indication that the amount of free space on the disk is
insufficient.

Network Statistics Reports: sar -n KEYWORD

The option —n lets you generate multiple network related reports. Specify one of the
following keywords along with the —n:

DEYV: Generates a statistic report for all network devices

EDEYV: Generates an error statistics report for all network devices

* NFS: Generates a statistic report for an NFS client

NFSD: Generates a statistic report for an NFS server

SOCK: Generates a statistic report on sockets

* ALL: Generates all network statistic reports

16 System Analysis and Tuning Guide

Visualizing sar Data

sar reports are not always easy to parse for humans. kSar, a Java application
visualizing your sar data, creates easy-to-read graphs. It can even generate
PDF reports. kSar takes data generated on the fly as well as past data from a file.
kSar is licensed under the BSD license and is available from http://ksar
.atomique.net/

2.2 System Information

2.2.1 Device Load Information: iostat

iostat monitors the system device loading. It generates reports that can be useful
for better balancing the load between physical disks attached to your system.

The first iostat report shows statistics collected since the system was booted.
Subsequent reports cover the time since the previous report.

tux@mercury:~> iostat
Linux 2.6.32.7-0.2-default (geeko@buildhost) 02/24/10 _x86_64_

avg-cpu: Suser %nice %$system %$iowait $steal %$idle

0,49 0,01 0,10 0,31 0,00 99,09
Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn
sda 1,34 5,59 25,37 1459766 6629160
sdal 0,00 0,01 0,00 1519 0
sda2 0,87 5,11 17,83 1335365 4658152
sda3 0,47 0,47 7,54 122578 1971008

When invoked with the —n option, 1ostat adds statistics of network file systems
(NFS) load. The option —x shows extended statistics information.

You can also specify which device should be monitored at what time intervals. For
example, iostat -p sda 3 5 will display five reports at three second intervals
for device sda.

NOTE: sysstat Package

iostat is part of sysstat package. To use it, install the package with
zypper in sysstat

System Monitoring Utilities 17

http://ksar.atomique.net/
http://ksar.atomique.net/

2.2.2 Processor Activity Monitoring:
mpstat

The utility mpstat examines activities of each available processor. If your system
has one processor only, the global average statistics will be reported.

With the —P option, you can specify the number of processors to be reported (note
that O is the first processor). The timing arguments work the same way as with the
iostat command. Entering mpstat -P 1 2 5 prints five reports for the second

processor (number 1) at 2 second intervals.
tux@mercury:~> mpstat -P 1 2 5
Linux 2.6.32.7-0.2-default (geeko@buildhost) 02/24/10 _x86_64_

08:57:10 CPU susr $nice $sys %iowait $irqg $soft %steal \
%guest %$idle

08:57:12 1 4.46 0.00 5.94 0.50 0.00 0.00 0.00 \
0.00 89.11

08:57:14 1 1.98 0.00 2.97 0.99 0.00 0.99 0.00 \
0.00 93.07

08:57:16 1 2.50 0.00 3.00 0.00 0.00 1.00 0.00 \
0.00 93.50

08:57:18 1 14.36 0.00 1.98 0.00 0.00 0.50 0.00 \
0.00 83.17

08:57:20 1 2.51 0.00 4.02 0.00 0.00 2.01 0.00 \
0.00 91.46

Average: 1 5.17 0.00 3.58 0.30 0.00 0.90 0.00 \

0.00 90.05

2.2.3 Task Monitoring: pidstat

If you need to see what load a particular task applies to your system, use pidstat
command. It prints activity of every selected task or all tasks managed by Linux
kernel if no task is specified. You can also set the number of reports to be displayed
and the time interval between them.

For example, pidstat -C top 2 3 prints the load statistic for tasks whose
command name includes the string “top”. There will be three reports printed at two

second intervals.
tux@mercury:~> pidstat -C top 2 3
Linux 2.6.27.19-5-default (geeko@buildhost) 03/23/2009 _x86_64_

09:25:42 AM PID %usr %system S$Sguest %CPU CPU Command
09:25:44 AM 23576 37.62 61.39 0.00 99.01 1 top
09:25:44 AM PID %usr %system S$guest %CPU CPU Command

18 System Analysis and Tuning Guide

09:25:46 AM 23576 37.00 62.00 0.00 99.00 1 top

09:25:46 AM PID %usr %system S$guest $CPU CPU Command
09:25:48 AM 23576 38.00 61.00 0.00 99.00 1 top
Average: PID %usr $system S$Sguest $CPU CPU Command
Average: 23576 37.54 61.46 0.00 99.00 - top

2.2.4 Kernel Ring Buffer: dmesg

The Linux kernel keeps certain messages in a ring buffer. To view these messages,

enter the command dmesg:

tux@mercury:~> dmesg

[...]

end_request: I/0 error, dev £d0, sector 0

subfs: unsuccessful attempt to mount media (256)

el100: ethO: el100_watchdog: link up, 100Mbps, half-duplex
NET: Registered protocol family 17

IA-32 Microcode Update Driver: vl1.14 <tigran@veritas.com>
microcode: CPUO updated from revision Oxe to 0x2e, date = 08112004
IA-32 Microcode Update Driver v1.14 unregistered
bootsplash: status on console 0 changed to on

NET: Registered protocol family 10

Disabled Privacy Extensions on device c0326ea0 (lo)

IPv6 over IPv4 tunneling driver

powernow: This module only works with AMD K7 CPUs
bootsplash: status on console 0 changed to on

Older events are logged in the files /var/log/messages and /var/log/
warn

2.2.5 List of Open Files: Isof

To view a list of all the files open for the process with process ID PID, use —p. For

example, to view all the files used by the current shell, enter:
tux@mercury:~> lsof -p $$
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

bash 5552 tux cwd DIR 3,3 1512 117619 /home/tux

bash 5552 tux rtd DIR 3,3 584 2/

bash 5552 tux txt REG 3,3 498816 13047 /bin/bash

bash 5552 tux mem REG 0,0 0 [heap] (stat: No such
bash 5552 tux mem REG 3,3 217016 115687 /var/run/nscd/passwd
bash 5552 tux mem REG 3,3 208464 11867 /usr/lib/locale/en_GB.
[...]

bash 5552 tux mem REG 3,3 366 9720 /usr/lib/locale/en_GB.
bash 5552 tux mem REG 3,3 97165 8828 /lib/1d-2.3.6.s0

bash 5552 tux Ou CHR 136,5 7 /dev/pts/5

bash 5552 tux 1u CHR 136,5 7 /dev/pts/5

System Monitoring Utilities 19

bash 5552 tux 2u CHR 136,5 7 /dev/pts/5
bash 5552 tux 255u CHR 136,5 7 /dev/pts/5

The special shell variable $$, whose value is the process ID of the shell, has been
used.

The command 1sof lists all the files currently open when used without any
parameters. There are often thousands of open files, therefore, listing all of them is
rarely useful. However, the list of all files can be combined with search functions to

generate useful lists. For example, list all used character devices:
tux@mercury:~> lsof | grep CHR

bash 3838 tux Ou CHR 136,0 2 /dev/pts/0

bash 3838 tux 1lu CHR 136,0 2 /dev/pts/0

bash 3838 tux 2u CHR 136,0 2 /dev/pts/0

bash 3838 tux 255u CHR 136,0 2 /dev/pts/0

bash 5552 tux Ou CHR 136,5 7 /dev/pts/5

bash 5552 tux 1lu CHR 136,5 7 /dev/pts/5

bash 5552 tux 2u CHR 136,5 7 /dev/pts/5

bash 5552 tux 255u CHR 136,5 7 /dev/pts/5

X 5646 root mem CHR 1,1 1006 /dev/mem

lsof 5673 tux Ou CHR 136,5 7 /dev/pts/5

lsof 5673 tux 2u CHR 136,5 7 /dev/pts/5

grep 5674 tux 1lu CHR 136,5 7 /dev/pts/5

grep 5674 tux 2u CHR 136,5 7 /dev/pts/5

When used with -1, 1sof lists currently open Internet files as well:

tux@mercury:~> lsof -i

[...]

pidgin 4349 tux 17r IbPv4 15194 0t0 TCP \
jupiter.example.com:58542->www.example.net :https (ESTABLISHED)

pidgin 4349 tux 21u IPv4 15583 0t0 TCP \
jupiter.example.com:37051->aol.example.org:aol (ESTABLISHED)

evolution 4578 tux 38u IPv4 16102 0t0 TCP \
jupiter.example.com:57419->imap.example.com:imaps (ESTABLISHED)

npviewer. 9425 tux 40u IPv4 24769 0t0 TCP \
jupiter.example.com:51416->www.example.com:http (CLOSE_WAIT)

npviewer. 9425 tux 49u IPv4 24814 0t0 TCP \
jupiter.example.com:43964->www.example.org:http (CLOSE_WAIT)

ssh 17394 tux 3u IPv4 40654 0t0 TCP \

jupiter.example.com:35454->saturn.example.com:ssh (ESTABLISHED)

2.2.6 Kernel and udev Event Sequence
Viewer: udevadm monitor

udevadm monitor listens to the kernel uevents and events sent out by a udev
rule and prints the device path (DEVPATH) of the event to the console. This is a
sequence of events while connecting a USB memory stick:

20 System Analysis and Tuning Guide

NOTE: Monitoring udev Events

Only root user is allowed to monitor udev events by running the udevadm

command.

UEVENT [1138806687
UEVENT [1138806687
UEVENT[1138806687
UEVENT [1138806687

UDEV [1138806687
UDEV [1138806687
UDEV [1138806687
UDEV [1138806687

UEVENT [1138806692
UEVENT [1138806692
UEVENT[1138806692
UEVENT [1138806692

UDEV [1138806693
UDEV [1138806693
UDEV [1138806693
UDEV [1138806693
UEVENT [1138806694
UDEV [1138806694

UEVENT[1138806694

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
UEVENT [1138806697]

add@/devices/pci0000:00/0000:00:1d.
add@/devices/pci0000:00/0000:00:1d.

add@/class/scsi_host/host4
add@/class/usb_device/usbdev4.10

add@/devices/pci0000:00/0000:00:1d.
add@/devices/pci0000:00/0000:00:1d.

add@/class/scsi_host/host4
add@/class/usb_device/usbdev4.10

add@/devices/pci0000:00/0000:00:1d.

add@/block/sdb
add@/class/scsi_generic/sgl
add@/class/scsi_device/4:0:0:0

add@/devices/pci0000:00/0000:00:1d.

add@/class/scsi_generic/sgl
add@/class/scsi_device/4:0:0:0
add@/block/sdb
add@/block/sdb/sdbl
add@/block/sdb/sdbl
mount@/block/sdb/sdbl
umount@/block/sdb/sdbl

7/usbd/4-2/4-2.2
7/usbd4/4-2/4-2.2/4-2.2

7/usbd/4-2/4-2.2
7/usbd/4-2/4-2.2/4-2.2

7/usb4/4-2/4-2.2/4-2.2

7/usb4d/4-2/4-2.2/4-2.2

2.2.7 Information on Security Events:

audit

The Linux audit framework is a complex auditing system that collects detailed
information about all security related events. These records can be consequently
analyzed to discover if, for example, a violation of security policies occurred.

2.2.8 Server Resources Used by X11
Clients: xrestop

xrestop provides statistics for each connected X11 client's server-side resource.
The output is very similar to Section 2.3.4, “Table of Processes: top” (page 25).

xrestop — Display:

Monitoring 40 clients.

Pixmaps:
total

localhost:0
XErrors: 0
42013K total, Other:

206K total,

All: 42219K

System Monitoring Utilities 21

res-base Wins

3e00000
4600000
1600000
3400000
2c00000
2e00000
2600000
4800000
2a00000
1800000
1400000
3c00000
3a00000
0a00000
4e00000
2400000
0e00000
3200000
2200000
4400000
1a00000
3800000
1e00000
3600000
2000000
3000000

385 36
391 122
35 11
52 31
50 25
50 10
37 24
37 24
209 33
182 32
157 121
175 36
326 42
85 38
25 17
11 10
20 12
6 41
54 9
2 11
255 7
2 14
10 7
106 6
10 5
21 7

1
1

1
0
1
1
1
1
1
1
1
1
1
1
1
1
0
1
5
1
1
0
1
0
1
0
0

GCs Fnts Pxms Misc

751
182
76
69
43
36
34
34
323
302
231
248
579
317
60
56
50
72
30
30
42
34
42
30
21
11

107
889
142
74
50
42
50
49
238
285
477
168
444
224
66
51
92
84
31
34
11
37
9

9
34
9

2.3 Processes

Pxm mem Other

18161K 13K
4566K 33K
3811K 4K
2816K 4K
2374K 3K
2341K 3K
1772K 3K
1772K 3K
1111K 12K
1039K 12K
777K 18K
510K 9K
486K 20K
102K 9K
63K 3K
53K 1K
50K 3K
40K 8K
42K 3K
34K 2K
19K 6K
21K 2K
15K 624B
7K 3K

9K 1K

7K 888B

Total
18175K
4600K
3816K
2820K
2378K
2344K
1775K
1775K
1123K
1052K
796K
520K
506K
111K
66K
55K
54K
48K
45K
36K
26K
24K
15K
11K
10K
8K

PID Identifier
? NOVELL: SU
amaroK — S
KDE Deskto
Linux Shel
Linux Shel
Linux Shel
Root - Kon
Root - Kon
Trekstor25
kicker
kwin
de.comp.la
[opensuse—
Kopete
? YaST Contr
22061 suseplugge
22016 kded

? EMACS

? SUSEWatche
16489 kdesu

R S B R S e I VLV IRV IR AV A |

)

? KMix
22242 knotify
? KPowersave

22236 konqueror
? klipper
? KDE Wallet

2.3.1 Interprocess Communication: ipcs

The command ipcs produces a list of the IPC resources currently in use:

______ Shared Memory Segments

key

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

777777 Semaphore Arrays

key

shmid

58261504
58294273
83886083
83951622
83984391
84738056

semid

0x4d038abf 0

own
tux
tux
tux
tux
tux
roo

own
tux

22 System Analysis and Tuning Guide

er

t

er

bytes
393216
196608
43264
192000
282464

151552

nsems

DN

nattch

status
dest
dest

dest

—————— Message Queues ————————
key msqgid owner perms used-bytes messages

2.3.2 Process List: ps

The command ps produces a list of processes. Most parameters must be written
without a minus sign. Refer to ps ——help for a brief help or to the man page for
extensive help.

To list all processes with user and command line information, use ps axu:

tux@mercury:~> ps axu

USER PID %CPU $%MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 696 272 2 S 12:59 0:01 init [5]
root 2 0.0 0.0 0 0 2 SN 12:59 0:00 [ksoftirqgd
root 3 0.0 0.0 0 02 S< 12:59 0:00 [events
[...]

tux 4047 0.0 6.0 158548 31400 ° Ssl 13:02 0:06 mono-best
tux 4057 0.0 0.7 9036 3684 2 sl 13:02 0:00 /opt/gnome
tux 4067 0.0 0.1 2204 636 ? S 13:02 0:00 /opt/gnome
tux 4072 0.0 1.0 15996 5160 2 Ss 13:02 0:00 gnome-scre
tux 4114 0.0 3.7 130988 19172 2 SL1 13:06 0:04 sound-juic
tux 4818 0.0 0.3 4192 1812 pts/0 Ss 15:59 0:00 -bash

tux 4959 0.0 0.1 2324 816 pts/0 R+ 16:17 0:00 ps axu

To check how many sshd processes are running, use the option —p together with
the command pidof, which lists the process IDs of the given processes.

tux@mercury:~> ps —-p $(pidof sshd)

PID TTY STAT TIME COMMAND

3524 2 Ss 0:00 /usr/sbin/sshd -o PidFile=/var/run/sshd.init.pid
4813 7 Ss 0:00 sshd: tux [priv]

4817 2 R 0:00 sshd: tux@pts/0

The process list can be formatted according to your needs. The option —L returns
a list of all keywords. Enter the following command to issue a list of all processes
sorted by memory usage:

tux@mercury:~> ps ax —--format pid,rss,cmd --sort rss
PID RSS CMD
2 0 [ksoftirgd/0]
3 0 [events/0]
4 0 [khelper]
5 0 [kthread]
11 0 [kblockd/0]
12 0 [kacpid]
472 0 [pdflush]
473 0 [pdflush]

System Monitoring Utilities 23

R

4028 17556 nautilus --no-default-window --sm-client-id default2

4118 17800 ksnapshot

4114 19172 sound-juicer

4023 25144 gnome-panel --sm-client-id defaultl

4047 31400 mono-best --debug /usr/lib/beagle/Best.exe —--autostarted

3973 31520 mono-beagled --debug /usr/lib/beagle/BeagleDaemon.exe --bg --aut

Useful ps Calls

pPs aux —--sort column
Sort the output by column. Replace column with

pmem for physical memory ratio
pcpu for CPU ratio
rss for resident set size (non-swapped physical memory)

ps axo pid, %cpu,rss,vsz,args,wchan
Shows every process, their PID, CPU usage ratio, memory size (resident and
virtual), name, and their syscall.

ps axfo pid,args
Show a process tree.

2.3.3 Process Tree: pstree

The command pstree produces a list of processes in the form of a tree:

tux@mercury:~> pstree
init-+-NetworkManagerD
|-acpid
| -3* [automount]
| -cron
| —cupsd
| -2* [dbus—-daemon]
| -dbus—-launch
| -dcopserver
| -dhcpcd
| —events/0
| -gpg-agent
|-hald-+-hald-addon-acpi
| ‘~hald-addon-stor

| -kded
|-kdeinit-+-kdesu---su-—--kdesu_stub---yast2---y2controlcenter
| |-kio_file

| | -klauncher

| | -konqueror

24 System Analysis and Tuning Guide

| -konsole—-+-bash—-——-su-—--bash

| | *-bash

| —-kwin

| -kdesktop——--kdesktop_lock—-—-xmatrix
| -kdesud

| —kdm—+-X

| ' ~kdm---startkde---kwrapper
[...]

The parameter —p adds the process ID to a given name. To have the command lines
displayed as well, use the —a parameter:

2.3.4 Table of Processes: top

The command t op, which stands for table of processes, displays a list of
processes that is refreshed every two seconds. To terminate the program, press Q.
The parameter —n 1 terminates the program after a single display of the process list.
The following is an example output of the command top -n 1:

tux@mercury:~> top -n 1

top - 17:06:28 up 2:10, 5 users, load average: 0.00, 0.00, 0.00

Tasks: 85 total, 1 running, 83 sleeping, 1 stopped, 0 zombie
Cpu(s): 5.5% us, 0.8% sy, 0.8% ni, 91.9% id, 1.0% wa, 0.0% hi, 0.0% si

Mem: 515584k total, 506468k used, 9116k free, 66324k buffers
Swap: 658656k total, Ok used, 658656k free, 353328k cached
PID USER PR NI VIRT RES SHR S %CPU $%MEM TIME+ COMMAND
1 root 16 0 700 272 236 S 0.0 0.1 0:01.33 init
2 root 34 19 0 0 0s 0.0 0.0 0:00.00 ksoftirqgd/0
3 root 10 -5 0 0 0s 0.0 0.0 0:00.27 events/0
4 root 10 -5 0 0 0s 0.0 0.0 0:00.01 khelper
5 root 10 -5 0 0 0SS 0.0 0.0 0:00.00 kthread
11 root 10 -5 0 0 0s 0.0 0.0 0:00.05 kblockd/0
12 root 20 -5 0 0 0s 0.0 0.0 0:00.00 kacpid
472 root 20 0 0 0 0s 0.0 0.0 0:00.00 pdflush
473 root 15 0 0 0 0s 0.0 0.0 0:00.06 pdflush
475 root 11 -5 0 0 0s 0.0 0.0 0:00.00 aio/0
474 root 15 0 0 0 0s 0.0 0.0 0:00.07 kswapdO
681 root 10 -5 0 0 0s 0.0 0.0 0:00.01 kseriod
839 root 10 -5 0 0 0SS 0.0 0.0 0:00.02 reiserfs/0
923 root 13 -4 1712 552 344 S 0.0 0.1 0:00.67 udevd
1343 root 10 -5 0 0 0s 0.0 0.0 0:00.00 khubd
1587 root 20 0 0 0 0s 0.0 0.0 0:00.00 shpchpd_event
1746 root 15 0 0 0 0s 0.0 0.0 0:00.00 wl_control
1752 root 15 0 0 0 0SS 0.0 0.0 0:00.00 wl_bus_masterl
2151 root 16 0 1464 496 416 s 0.0 0.1 0:00.00 acpid
2165 messageb 16 0 3340 1048 792 s 0.0 0.2 0:00.64 dbus—daemon
2166 root 15 0 1840 752 556 S 0.0 0.1 0:00.01 syslog—-ng
2171 root 16 0 1600 516 320 s 0.0 0.1 0:00.00 klogd

System Monitoring Utilities 25

2235 root 15 0 1736 800 652 s 0.0 0.2 0:00.10 resmgrd

2289 root 16 0 4192 2852 1444 s 0.0 0.6 0:02.05 hald

2403 root 23 0 1756 600 524 s 0.0 0.1 0:00.00 hald-addon-acpi
2709 root 19 0 2668 1076 944 s 0.0 0.2 0:00.00 NetworkManagerD
2714 root 16 0 1756 648 564 s 0.0 0.1 0:00.56 hald-addon-stor

By default the output is sorted by CPU usage (column %CPU, shortcut Shift + P).
Use following shortcuts to change the sort field:

Shift + M: Resident Memory (RES)
Shift + N: Process ID (PID)
Shift + T: Time (TIME+)

To use any other field for sorting, press F and select a field from the list. To toggle
the sort order, Use Shift + R.

The parameter —~U UID monitors only the processes associated with a particular
user. Replace UID with the user ID of the user. Use top -U $(id -u) to show
processes of the current user

2.3.5 Modify a process' niceness: nice
and renice

The kernel determines which processes require more CPU time than others by the
process' nice level, also called niceness. The higher the “nice” level of a process is,
the less CPU time it will take from other processes. Nice levels range from -20 (the
least “nice” level) to 19. Negative values can only be set by root.

Adjusting the niceness level is useful when running a non time-critical process that
lasts long and uses large amounts of CPU time, such as compiling a kernel on a
system that also performs other tasks. Making such a process “nicer”, ensures that
the other tasks, for example a Web server, will have a higher priority.

Calling nice without any parameters prints the current niceness:

tux@mercury:~> nice
0

Running nice command increments the current nice level for the given command

by 10. Using nice —-n level command lets you specify a new niceness relative
to the current one.

26 System Analysis and Tuning Guide

To change the niceness of a running process, use renice priority -p
process 1id, for example:

renice +5 3266

To renice all processes owned by a specific user, use the option —u user. Process
groups are reniced by the option ~g process group id.

2.4 Memory

2.4.1 Memory Usage: free

The utility free examines RAM and swap usage. Details of both free and used
memory and swap areas are shown:

tux@mercury:~> free

total used free shared buffers cached
Mem: 2062844 2047444 15400 0 129580 921936
-/+ buffers/cache: 995928 1066916
Swap: 2104472 0 2104472

The options b, —k, —m, —g show the output in bytes, KB, MB, or GB, respectively.
The parameter —d delay ensures that the display is refreshed every delay
seconds. For example, free —d 1.5 produces an update every 1.5 seconds.

2.4.2 Detailed Memory Usage: /proc/
meminfo

Use /proc/meminfo to get more detailed information on memory usage than
with free. Actually free uses some of the data from this file. See an example
output from a 64bit system below. Note that it slightly differs on 32bit systems due to
different memory management):

tux@mercury:~> cat /proc/meminfo

MemTotal: 8182956 kB
MemFree: 1045744 kB
Buffers: 364364 kB
Cached: 5601388 kB
SwapCached: 1936 kB
Active: 4048268 kB

System Monitoring Utilities 27

Inactive: 2674796 kB
Active (anon) : 663088 kB
Inactive (anon) : 107108 kB
Active (file) : 3385180 kB
Inactive (file): 2567688 kB
Unevictable: 4 kB
Mlocked: 4 kB
SwapTotal: 2096440 kB
SwapFree: 2076692 kB
Dirty: 44 kB
Writeback: 0 kB
AnonPages: 756108 kB
Mapped: 147320 kB
Slab: 329216 kB
SReclaimable: 300220 kB
SUnreclaim: 28996 kB
PageTables: 21092 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 6187916 kB
Committed_AS: 1388160 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 133384 kB
VmallocChunk: 34359570939 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMapék: 2689024 kB
DirectMap2M: 5691392 kB

The most important entries are:

MemTotal
Total amount of usable RAM

MemkFree
Total amount of unused RAM

Buffers
File buffer cache in RAM

Cached
Page cache (excluding buffer cache) in RAM

SwapCached
Page cache in swap

28 System Analysis and Tuning Guide

Active
Recently used memory that normally is not reclaimed. This value is the sum of
memory claimed by anonymous pages (listed as Active(anon)) and file-backed
pages (listed as Active(file))

Inactive
Recently unused memory that can be reclaimed. This value is the sum of
memory claimed by anonymous pages (listed as Inactive(anon)) and file-backed
pages (listed as Inactive(file)).

SwapTotal
Total amount of swap space

SwapFree
Total amount of unused swap space

Dirty
Amount of memory that will be written to disk

Writeback
Amount of memory that currently is written to disk

Mapped
Memory claimed with the nmap command

Slab
Kernel data structure cache

SReclaimable
Reclaimable slab caches (inode, dentry, etc.)

Committed_AS
An approximation of the total amount of memory (RAM plus swap) the current
workload needs in the worst case.

2.4.3 Process Memory Usage: smaps

Exactly determining how much memory a certain process is consuming is not

possible with standard tools like t op or ps. Use the smaps subsystem, introduced in
Kernel 2.6.14, if you need exact data. It can be found at /proc/pid/smaps and
shows you the number of clean and dirty memory pages the process with the ID PTD

System Monitoring Utilities 29

is using at that time. It differentiates between shared and private memory, so you are
able to see how much memory the process is using without including memory shared
with other processes.

2.5 Networking

2.5.1 Show the Network Status: netstat

netstat shows network connections, routing tables (—r), interfaces (1),
masquerade connections (—M), multicast memberships (—g), and statistics (-s).

tux@mercury:~> netstat -r
Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.2.0 * 255.255.254.0 U 00 0 ethO
link-local * 255.255.0.0 U 00 0 ethO
loopback * 255.0.0.0 §) 00 0 lo
default 192.168.2.254 0.0.0.0 UG 00 0 eth0

tux@mercury:~> netstat -i
Kernel Interface table
Iface MTU Met RX-0OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg

ethO 1500 0 1624507 129056 0 0 7055 0 0 0
BMNRU
lo 16436 0 23728 0 0 0 23728 0 0 0 LRU

When displaying network connections or statistics, you can specify the socket type to
display: TCP (-t), UDP (-u), or raw (-r). The —p option shows the PID and name
of the program to which each socket belongs.

The following example lists all TCP connections and the programs using these
connections.

mercury:~ # netstat -t -p
Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Pro
[...]

tcp 0 0 mercury:33513 www.novell.com:www—http ESTABLISHED 6862/
fi

tcp 0 352 mercury:ssh mercury2.:trc-netpoll ESTABLISHED
19422/s

tcp 0 0 localhost:ssh localhost:17828 ESTABLISHED -

In the following, statistics for the TCP protocol are displayed:

30 System Analysis and Tuning Guide

tux@mercury:~> netstat -s -t

Tcp:
2427 active connections openings
2374 passive connection openings
0 failed connection attempts
0 connection resets received
1 connections established
27476 segments received
26786 segments send out
54 segments retransmited
0 bad segments received.
6 resets sent

[...]
TCPAbortOnLinger: 0
TCPAbortFailed: 0
TCPMemoryPressures: 0

2.5.2 Interactive Network Monitor: iptraf

The iptraf utility is a menu based Local Area Network (LAN) monitor. It
generates network statistics, including TCP and UDP counts, Ethernet load
information, IP checksum errors and others.

If you enter the command without any option, it runs in an interactive mode. You can
navigate through graphical menus and choose the statistics that you want iptraf to
report. You can also specify which network interface to examine.

Figure 2.1 iptraf Running in Interactive Mode

Total: 258627 89983 168644
1P: 238119 76841 154878

TCP: 178288 24536 153744
UDP : 45639 45385 334
a

ICHP : a [*] a a
Other IP: 6208 6208
Hon-1IP: a a a

Total rates: .2 kbits/sec Broadcast packets:
packets/sec Broadcast bytes:

Incoming rates: .5 kbits/sec
packets/sec
IP checksum errors:
Dutgoing rates: .6 kbits/sec
packets/sec

X-exit

The command iptraf understands several options and can be run in a batch mode
as well. The following example will collect statistics for network interface ethO (-
i) for 1 minute (-t). It will be run in the background (-B) and the statistics will be
written to the iptraf.log file in your home directory (-L).

System Monitoring Utilities 31

tux@mercury:~> iptraf -i eth0 -t 1 -B -L ~/iptraf.log

You can examine the log file with the more command:

tux@mercury:~> more ~/iptraf.log

Mon Mar 23 10:08:02 2010; *******x* TP traffic monitor started *******xx

Mon Mar 23 10:08:02 2010; UDP; ethO; 107 bytes; from 192.168.1.192:33157 to
\

239.255.255.253:427

Mon Mar 23 10:08:02 2010; VRRP; eth0; 46 bytes; from 192.168.1.252 to \
224.0.0.18

Mon Mar 23 10:08:03 2010; VRRP; ethO; 46 bytes; from 192.168.1.252 to \
224.0.0.18

Mon Mar 23 10:08:03 2010; VRRP; eth0; 46 bytes; from 192.168.1.252 to \
224.0.0.18

[...]

Mon Mar 23 10:08:06 2010; UDP; eth0; 132 bytes; from 192.168.1.54:54395 to \
10.20.7.255:111

Mon Mar 23 10:08:06 2010; UDP; ethO; 46 bytes; from 192.168.1.92:27258 to \
10.20.7.255:8765

Mon Mar 23 10:08:06 2010; UDP; ethO; 124 bytes; from 192.168.1.139:43464 to
\

10.20.7.255:111

Mon Mar 23 10:08:06 2010; VRRP; eth0; 46 bytes; from 192.168.1.252 to \
224.0.0.18

——More—--(7%)

2.6 The /proc File System

The /proc file system is a pseudo file system in which the kernel reserves
important information in the form of virtual files. For example, display the CPU type
with this command:

tux@mercury:~> cat /proc/cpuinfo

processor : 0

vendor_id : GenuinelIntel

cpu family : 15

model : 4

model name : Intel(R) Pentium(R) 4 CPU 3.40GHz
stepping HEC]

cpu MHz : 2800.000

cache size : 2048 KB

physical id : 0

[...]

Query the allocation and use of interrupts with the following command:

tux@mercury:~> cat /proc/interrupts
CPUO
0: 3577519 XT-PIC timer

32 System Analysis and Tuning Guide

1: 130 XT-PIC
2: 0 XT-PIC
5: 564535 XT-PIC
7 1 XT-PIC
8: 2 XT-PIC
9: 1 XT-PIC
10: 0 XT-PIC
11: 71772 XT-PIC
12: 101150 XT-PIC
14: 33146 XT-PIC
15: 149202 XT-PIC
NMTI : 0
LOC: 0
ERR: 0
MIS: 0

18042

cascade

Intel 82801DB-ICH4
parport0

rtc

acpi, uhci_hcd:usbl,
uhci_hcd:usb3
uhci_hcd:usb2, ethO
18042

ideO

idel

Some of the important files and their contents are:

/proc/devices
Available devices

/proc/modules
Kernel modules loaded

/proc/cmdline
Kernel command line

/proc/meminfo

Detailed information about memory usage

/proc/config.gz

ehci_hcd:usb4

gzip-compressed configuration file of the kernel currently running

Further information is available in the text file /usr/src/linux/

Documentation/filesystems/proc.txt (this file is available when
the package kernel-source is installed). Find information about processes
currently running in the /proc/NNN directories, where NNN is the process ID (PID)
of the relevant process. Every process can find its own characteristics in /proc/

self/

tux@mercury:~> ls -1 /proc/self
lrwxrwxrwx 1 root root 64 2007-07-16 13:03 /proc/self —-> 5356

tux@mercury:~> ls -1 /proc/self/

total O

dr-xr-xr-x 2 tux
—r———————= 1 tux
-r——-r——-r—— 1 tux

lrwxrwxrwx 1 tux

users
users
users
users

0
0
0
0

2007-07-16 17
2007-07-16 17
2007-07-16 17
2007-07-16 17

:04
: 04
: 04
:04

attr

auxv

cmdline

cwd —-> /home/tux

System Monitoring Utilities 33

—r———————= 1 tux users 0 2007-07-16 17:04 environ
lrwxrwxrwx 1 tux users 0 2007-07-16 17:04 exe -> /bin/ls
dr-x————-- 2 tux users 0 2007-07-16 17:04 fd
-rw-r—-—-r—— 1 tux users 0 2007-07-16 17:04 loginuid
-r—-—-r--r—-— 1 tux users 0 2007-07-16 17:04 maps
—rw-——————- 1 tux users 0 2007-07-16 17:04 mem
-r-—-r—-r—— 1 tux users 0 2007-07-16 17:04 mounts
-rw-r-—-r-— 1 tux users 0 2007-07-16 17:04 oom_adj
-r—-—r——r—— 1 tux users 0 2007-07-16 17:04 oom_score
lrwxrwxrwx 1 tux users 0 2007-07-16 17:04 root —> /
—rw-——————— 1 tux users 0 2007-07-16 17:04 seccomp
-r-——-r——-r—— 1 tux users 0 2007-07-16 17:04 smaps
—r——r-—-r-—-— tux users 0 2007-07-16 17:04 stat

[...]
dr-xr-xr-x 3 tux users 2007-07-16 17:04 task
-r—-—-r--r—-— 1 tux users 0 2007-07-16 17:04 wchan

o

The address assignment of executables and libraries is contained in the maps file:

tux@mercury:~> cat /proc/self/maps

08048000-0804c000 r-xp 00000000 03:03 17753 /bin/cat

0804c000-0804d000 rw-p 00004000 03:03 17753 /bin/cat

0804d000-0806e000 rw-p 08044000 00:00 O [heap]

b7d27000-b7d5a000 r--p 00000000 03:03 11867 /usr/lib/locale/en_GB.utf8/
b7d5a000-b7e32000 r--p 00000000 03:03 11868 /usr/lib/locale/en_GB.utf8/
b7e32000-b7e33000 rw-p b7e32000 00:00 O

b7e33000-b7£45000 r-xp 00000000 03:03 8837 /1lib/libc-2.3.6.s0
b7£45000-b7£46000 r--p 00112000 03:03 8837 /1ib/libc-2.3.6.s0
b7£46000-b7£48000 rw-p 00113000 03:03 8837 /1lib/1libc-2.3.6.s0
b7£48000-b7£4c000 rw-p b7£48000 00:00 O

b7£52000-b7£53000 r--p 00000000 03:03 11842 /usr/lib/locale/en_GB.utf8/
[...]

b7£50000-b7£61000 r—--s 00000000 03:03 9109 /usr/lib/gconv/gconv-module
b7£61000-b7£62000 r--p 00000000 03:03 9720 /usr/lib/locale/en_GB.utf8/
b7£62000-b7£76000 r-xp 00000000 03:03 8828 /1lib/1d-2.3.6.s0
b7£76000-b7£78000 rw-p 00013000 03:03 8828 /1ib/1d-2.3.6.s0
bfd61000-b£fd76000 rw-p bfd61000 00:00 O [stack]

ffffe000-£f££££000 —-——p 00000000 00:00 O [vdso]

2.6.1 procinfo

Important information from the /proc file system is summarized by the command
procinfo:

tux@mercury:~> procinfo
Linux 2.6.32.7-0.2-default (geeko@buildhost) (gcc 4.3.4) #1 2CPU

Memory: Total Used Free Shared Buffers
Mem: 2060604 2011264 49340 0 200664
Swap: 2104472 112 2104360

34 System Analysis and Tuning Guide

Bootup: Wed Feb 17 03:39:33 2010 Load average: 0.86 1.10 1.11 3/118 21547

user 2:43:13.78 0.8% page in : 71099181 disk 1: 2827023r 968
nice : 1d 22:21:27.87 14.7% page out: 690734737

system: 13:39:57.57 4.3% page act: 138388345

IOwait: 18:02:18.59 5.7% page dea: 29639529

hw irqg: 0:03:39.44 0.0% page flt: 9539791626

sw irqg: 1:15:35.25 0.4% swap in : 69

idle : 9d 16:07:56.79 73.8% swap out: 209

uptime: 6d 13:07:11.14 context : 542720687

irg 0: 141399308 timer irg 14: 5074312 ideO

irg 1 73784 18042 irg 50: 1938076 uhci_hcd:usbl, ehci_
irg 4 2 irg 58: 0 uhci_hcd:usb2

irg 6: 5 floppy [2] irg 66: 872711 uhci_hcd:usb3, HDA I
irg 7: 2 irg 74: 15 uvhci_hcd:usb4

irg 8 0 rtc irg 82: 178717720 0 PCI-MSI e
irg 9 0 acpi irgl69: 44352794 nvidia

irg 12 3 irg233: 8209068 0 PCI-MSI 1

To see all the information, use the parameter —a. The parameter —nN produces
updates of the information every N seconds. In this case, terminate the program by
pressing Q.

By default, the cumulative values are displayed. The parameter —d produces the
differential values. procinfo -dnS5 displays the values that have changed in the
last five seconds:

2.7 Hardware Information

2.7.1 PCl Resources: Ispci

NOTE: Accessing PCI configuration.

Most operating systems require root user privileges to grant access to the
computer's PCI configuration.

The command 1spci lists the PCI resources:

mercury:~ # lspci

00:00.0 Host bridge: Intel Corporation 82845G/GL[Brookdale-G]/GE/PE \
DRAM Controller/Host-Hub Interface (rev 01)

00:01.0 PCI bridge: Intel Corporation 82845G/GL[Brookdale-G]/GE/PE \
Host-to-AGP Bridge (rev 01)

System Monitoring Utilities 35

00:1d.0 USB Controller: Intel Corporation 82801DB/DBL/DBM \
(ICH4/ICH4-L/ICH4-M) USB UHCI Controller #1 (rev 01)

00:1d.1 USB Controller: Intel Corporation 82801DB/DBL/DBM \
(ICH4/ICH4-1L/ICH4-M) USB UHCI Controller #2 (rev 01)

00:1d.2 USB Controller: Intel Corporation 82801DB/DBL/DBM \
(ICH4/ICH4-L/ICH4-M) USB UHCI Controller #3 (rev 01)

00:1d.7 USB Controller: Intel Corporation 82801DB/DBM \
(ICH4/ICH4-M) USB2 EHCI Controller (rev 01)

00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev 81)

00:1£f.0 ISA bridge: Intel Corporation 82801DB/DBL (ICH4/ICH4-L) \
LPC Interface Bridge (rev 01)

00:1f.1 IDE interface: Intel Corporation 82801DB (ICH4) IDE \
Controller (rev 01)

00:1f.3 SMBus: Intel Corporation 82801DB/DBL/DBM (ICH4/ICH4-L/ICH4-M) \
SMBus Controller (rev 01)

00:1f.5 Multimedia audio controller: Intel Corporation 82801DB/DBL/DBM \
(ICH4/ICH4-L/ICH4-M) AC'97 Audio Controller (rev 01)

01:00.0 VGA compatible controller: Matrox Graphics, Inc. G400/G450 (rev 85)

02:08.0 Ethernet controller: Intel Corporation 82801DB PRO/100 VE (LOM) \
Ethernet Controller (rev 81)

Using —v results in a more detailed listing:

mercury:~ # lspci -v
[...]
00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet \
Controller (rev 02)
Subsystem: Intel Corporation PRO/1000 MT Desktop Adapter
Flags: bus master, 66MHz, medium devsel, latency 64, IRQ 19
Memory at £0000000 (32-bit, non-prefetchable) [size=128K]
I/0 ports at d010 [size=8]
Capabilities: [dc] Power Management version 2
Capabilities: [e4] PCI-X non-bridge device
Kernel driver in use: e1000
Kernel modules: e1000

Information about device name resolution is obtained from the file /usr/share/
pci.ids .PCIIDs not listed in this file are marked “Unknown device.”

The parameter —vv produces all the information that could be queried by the
program. To view the pure numeric values, use the parameter —n.

2.7.2 USB Devices: Isusb

The command 1susb lists all USB devices. With the option —v, print a more
detailed list. The detailed information is read from the directory /proc/bus/
usb/ . The following is the output of 1 susb with these USB devices attached:
hub, memory stick, hard disk and mouse.

36 System Analysis and Tuning Guide

mercury:/ # lsusb

Bus 004 Device 007:

Bus 004 Device 006:

Adapter

Bus 004
Bus 004
Bus 003
Bus 002
Bus 001
Bus 001

Device
Device
Device
Device
Device
Device

005:
001:
001:
001:
005:
001:

ID

ID

D
ID
1D
ID
ID
D

0ea0:2168 Ours Technology, Inc. Transcend JetFlash \
2.0 / Astone USB Drive
04b4:6830 Cypress Semiconductor Corp. USB-2.0 IDE \

05e3:0605 Genesys Logic, Inc.

0000:0000
0000:0000
0000:0000

046d:c012 Logitech, Inc. Optical Mouse

0000:0000

2.8 Files and File Systems

2.8.1 Determine the File Type: file

The command file determines the type of a file or a list of files by checking /
usr/share/misc/magic

tux@mercury:~> file /usr/bin/file

/usr/bin/file:

for GNU/Linux 2.6.4,

ELF 64-bit LSB executable, x86-64, version 1

dynamically linked

(sysv), \

(uses shared 1libs), stripped

The parameter —f 11ist specifies a file with a list of filenames to examine. The —z
allows f1ile to look inside compressed files:

tux@mercury:~> file /usr/share/man/manl/file.l.gz

/usr/share/man/manl/file.1.gz:

compression
tux@mercury:~> file -z /usr/share/man/manl/file.l.gz

/usr/share/man/manl/file.1.gz:

(gzip compressed data, from Unix,

gzip compressed data,

max compression)

from Unix, max

troff or preprocessor input text \

The parameter —1 outputs a mime type string rather than the traditional description.

tux@mercury:~> file -i /usr/share/misc/magic
/usr/share/misc/magic: text/plain charset=utf-8

2.8.2 File Systems and Their Usage:
mount, df and du

The command mount shows which file system (device and type) is mounted at
which mount point:

System Monitoring Utilities 37

tux@mercury:~> mount

/dev/sda2 on / type extd (rw,acl,user_xattr)

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

debugfs on /sys/kernel/debug type debugfs (rw)

devtmpfs on /dev type devtmpfs (rw,mode=0755)

tmpfs on /dev/shm type tmpfs (rw,mode=1777)

devpts on /dev/pts type devpts (rw,mode=0620,gid=5)
/dev/sda3 on /home type ext3 (rw)

securityfs on /sys/kernel/security type securityfs (rw)
fusectl on /sys/fs/fuse/connections type fusectl (rw)
gvfs-fuse-daemon on /home/tux/.gvfs type fuse.gvfs-fuse-daemon \
(rw, nosuid, nodev, user=tux)

Obtain information about total usage of the file systems with the command df.
The parameter —h (or ——human-readable) transforms the output into a form
understandable for common users.

tux@mercury:~> df -h

Filesystem Size Used Avail Use% Mounted on
/dev/sda2 20G 5,9G 136G 32% /

devtmpfs 1,6G 236K 1,6G 1% /dev

tmpfs 1,6G 668K 1,6G 1% /dev/shm
/dev/sda3 208G 40G 159G 20% /home

Display the total size of all the files in a given directory and its subdirectories with
the command du. The parameter —s suppresses the output of detailed information
and gives only a total for each argument. —h again transforms the output into a
human-readable form:

tux@mercury:~> du —-sh /opt
192M /opt

2.8.3 Additional Information about ELF
Binaries

Read the content of binaries with the readelf utility. This even works with ELF
files that were built for other hardware architectures:

tux@mercury:~> readelf —--file-header /bin/ls
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)

38 System Analysis and Tuning Guide

Machine: Advanced Micro Devices X86-64

Version: 0x1

Entry point address: 0x402540

Start of program headers: 64 (bytes into file)
Start of section headers: 95720 (bytes into file)
Flags: 0x0

Size of this header: 64 (bytes)

Size of program headers: 56 (bytes)

Number of program headers: 9

Size of section headers: 64 (bytes)

Number of section headers: 32

Section header string table index: 31

2.8.4 File Properties: stat

The command stat displays file properties:

tux@mercury:~> stat /etc/profile
File: " /etc/profile'

Size: 9662 Blocks: 24 IO Block: 4096 regular file
Device: 802h/2050d Inode: 132349 Links: 1
Access: (0644/-rw-r——r——) Uid: (0/ root) Gid: (0/ root)

Access: 2009-03-20 07:51:17.000000000 +0100
Modify: 2009-01-08 19:21:14.000000000 +0100
Change: 2009-03-18 12:55:31.000000000 +0100

The parameter ——file-system produces details of the properties of the file
system in which the specified file is located:

tux@mercury:~> stat /etc/profile --file-system
File: "/etc/profile™"
ID: d4fb76e70b4d1746 Namelen: 255 Type: ext2/ext3
Block size: 4096 Fundamental block size: 4096
Blocks: Total: 2581445 Free: 1717327 Available: 1586197
Inodes: Total: 655776 Free: 490312

2.9 User Information

2.9.1 User Accessing Files: fuser

It can be useful to determine what processes or users are currently accessing certain
files. Suppose, for example, you want to unmount a file system mounted at /

mnt. umount returns "device is busy." The command fuser can then be used to
determine what processes are accessing the device:

System Monitoring Utilities 39

tux@mercury:~> fuser -v /mnt/*

USER PID ACCESS COMMAND
/mnt /notes.txt tux 26597 f.... less

Following termination of the 1ess process, which was running on another terminal,
the file system can successfully be unmounted. When used with —k option, fuser
will kill processes accessing the file as well.

2.9.2 Who Is Doing What: w

With the command w, find out who is logged onto the system and what each user is
doing. For example:

tux@mercury:~> w
14:58:43 up 1 day, 1:21, 2 users, load average: 0.00, 0.00, 0.00

USER TTY LOGING@ IDLE JCPU PCPU WHAT
tux :0 12:25 ?xdm? 1:23 0.12s /bin/sh /usr/bin/startkde
root pts/4 14:13 0.00s 0.06s 0.00s w

If any users of other systems have logged in remotely, the parameter — £ shows the
computers from which they have established the connection.

2.10 Time and Date

2.10.1 Time Measurement with time

Determine the time spent by commands with the t ime utility. This utility is
available in two versions: as a shell built-in and as a program (/usr/bin/time).

tux@mercury:~> time find . > /dev/null

real 0m4.051s@®
user O0m0.042s0®
sys 0m0.205s®

©® The real time that elapsed from the command's start-up till it finished.
® CPU time of the user as reported by the t imes system call.

® CPU time of the system as reported by the t imes system call.

40 System Analysis and Tuning Guide

2.11 Graph Your Data: RRDtool

There are a lot of data in the world around you, which can be easily measured in
time. For example, changes in the temperature, or the number of data sent or received
by your computer's network interface. RRDtool can help you store and visualize such
data in detailed and customizable graphs.

RRDtool is available for most UNIX platforms and Linux distributions. openSUSE®
ships RRDtool as well. Install it either with YaST or by entering

zypper install rrdtool inthe command line as root.

TIP

There are Perl, Python, Ruby, or PHP bindings available for RRDtool, so
that you can write your own monitoring scripts with your preferred scripting
language.

2.11.1 How RRDtool Works

RRDtool is a shortcut of Round Robin Database tool. Round Robin is a method for
manipulating with a constant amount of data. It uses the principle of a circular buffer,
where there is no end nor beginning to the data row which is being read. RRDtool
uses Round Robin Databases to store and read its data.

As mentioned above, RRDtool is designed to work with data that change in time. The
ideal case is a sensor which repeatedly reads measured data (like temperature, speed
etc.) in constant periods of time, and then exports them in a given format. Such data
are perfectly ready for RRDtool, and it is easy to process them and create the desired
output.

Sometimes it is not possible to obtain the data automatically and regularly. Their
format needs to be pre-processed before it is supplied to RRDtool, and often you
need to manipulate RRDtool even manually.

The following is a simple example of basic RRDtool usage. It illustrates all three
important phases of the usual RRDtool workflow: creating a database, updating
measured values, and viewing the output.

System Monitoring Utilities 41

2.11.2 Simple Real Life Example

Suppose we want to collect and view information about the memory usage in the
Linux system as it changes in time. To make the example more vivid, we measure
the currently free memory for the period of 40 seconds in 4-second intervals. During
the measuring, the three hungry applications that usually consume a lot of system
memory have been started and closed: the Firefox Web browser, the Evolution e-
mail client, and the Eclipse development framework.

Collecting Data

RRDtool is very often used to measure and visualize network traffic. In such case,
Simple Network Management Protocol (SNMP) is used. This protocol can query
network devices for relevant values of their internal counters. Exactly these values
are to be stored with RRDtool. For more information on SNMP, see http://www
.net-snmp.org/

Our situation is different - we need to obtain the data manually. A helper script
free_mem. sh repetitively reads the current state of free memory and writes it to
the standard output.
tux@mercury:~> cat free_mem.sh
INTERVAL=4
for steps in {1..10}
do
DATE="date +%s°
FREEMEM="free -b | grep "Mem" | awk '{ print $4 }'°
sleep SINTERVAL
echo "rrdtool update free_mem.rrd S$DATE:SFREEMEM"
done

Points to Notice

* The time interval is set to 4 seconds, and is implemented with the sleep
command.

* RRDtool accepts time information in a special format - so called Unix time. It is
defined as the number of seconds since the midnight of January 1, 1970 (UTC).
For example, 1272907114 represents 2010-05-03 17:18:34.

* The free memory information is reported in bytes with free -b. Prefer to supply
basic units (bytes) instead of multiple units (like kilobytes).

42 System Analysis and Tuning Guide

http://www.net-snmp.org/
http://www.net-snmp.org/

* The line with the echo ... command contains the future name of the database
file (free_mem. rrd), and together creates a command line for the purpose of
updating RRDtool values.

After running free_mem. sh, you see an output similar to this:

tux@mercury:~> sh free_mem.sh

rrdtool update free_mem.rrd 1272974835:1182994432
rrdtool update free_mem.rrd 1272974839:1162817536
rrdtool update free_mem.rrd 1272974843:1096269824
rrdtool update free_mem.rrd 1272974847:1034219520
rrdtool update free_mem.rrd 1272974851:909438976

rrdtool update free_mem.rrd 1272974855:832454656

rrdtool update free_mem.rrd 1272974859:829120512

rrdtool update free_mem.rrd 1272974863:1180377088
rrdtool update free_mem.rrd 1272974867:1179369472
rrdtool update free_mem.rrd 1272974871:1181806592

It is convenient to redirect the command's output to a file with
sh free_mem.sh > free_mem_updates.log

to ease its future execution.

Creating Database

Create the initial Robin Round database for our example with the following
command:

rrdtool create free_mem.rrd --start 1272974834 --step=4 \
DS:memory:GAUGE:600:U:U RRA:AVERAGE:0.5:1:24

Points to Notice

* This command creates a file called free_mem.rrd for storing our measured
values in a Round Robin type database.

* The ——start option specifies the time (in Unix time) when the first value will be
added to the database. In this example, it is one less than the first time value of the
free_mem. sh output (1272974835).

* The —-step specifies the time interval in seconds with which the measured data
will be supplied to the database.

* The DS :memory:GAUGE: 600 :U: U part introduces a new data source for the
database. It is called memory, its type is gauge, the maximum number between two

System Monitoring Utilities 43

updates is 600 seconds, and the minimal and maximal value in the measured range
are unknown (U).

e RRA:AVERAGE:0.5:1:24 creates Round Robin archive (RRA) whose stored
data are processed with the consolidation functions (CF) that calculates the
average of data points. 3 arguments of the consolidation function are appended to
the end of the line .

If no error message is displayed, then free_mem.rrd database is created in the
current directory:

tux@mercury:~> 1ls -1 free_mem.rrd
-rw-r-——-r—-— 1 tux users 776 May 5 12:50 free_mem.rrd

Updating Database Values

After the database is created, you need to fill it with the measured data. In Section
“Collecting Data” (page 42), we already prepared the file free_mem
_updates.log which consists of rrdtool update commands. These
commands do the update of database values for us.

tux@mercury:~> sh free_mem_updates.log; ls -1 free_mem.rrd
-rw-r--r—-— 1 tux users 776 May 5 13:29 free_mem.rrd

As you can see, the size of free_mem.rrd remained the same even after
updating its data.

Viewing Measured Values

We have already measured the values, created the database, and stored the measured
value in it. Now we can play with the database, and retrieve or view its values.

To retrieve all the values from our database, enter the following on the command
line:

tux@mercury:~> rrdtool fetch free_mem.rrd AVERAGE --start 1272974830 \
-—end 1272974871
memory
1272974832: nan
1272974836: 1.1729059840e+09
1272974840: 1.1461806080e+09

1272974844: 1.0807572480e+09
1272974848: 1.0030243840e+09
1272974852: 8.9019289600e+08
1272974856: 8.3162112000e+08
1272974860: 9.1693465600e+08

44 System Analysis and Tuning Guide

1272974864: 1.1801251840e+09
1272974868: 1.1799787520e+09
1272974872 nan

Points to Notice

* AVERAGE will fetch average value points from the database, because only one
data source is defined (Section “Creating Database” (page 43)) with AVERAGE
processing and no other function is available.

* The first line of the output prints the name of the data source as defined in Section
“Creating Database” (page 43).

* The left results column represents individual points in time, while the right one
represents corresponding measured average values in scientific notation.

¢ The nan in the last line stands for “not a number”.

Now a graph representing representing the values stored in the database is drawn:

tux@mercury:~> rrdtool graph free_mem.png \
—-—start 1272974830 \

——end 1272974871 \

——step=4 \

DEF: free_memory=free_mem.rrd:memory:AVERAGE \
LINE2: free_memory#FF0000 \

—--vertical-label "GB" \

—--title "Free System Memory in Time" \

--zoom 1.5 \

——x-grid SECOND:1:SECOND:4:SECOND:10:0:%X

Points to Notice

* free_mem.png is the file name of the graph to be created.

e ——start and ——end limit the time range within which the graph will be drawn.
* —-step specifies the time resolution (in seconds) of the graph.

e The DEF: ... partis a data definition called free_memory. Its data are read from
the free_mem.rrd database and its data source called memory. The average
value points are calculated, because no others were defined in Section “Creating
Database” (page 43).

* The LINE. . . part specifies properties of the line to be drawn into the graph. It is
2 pixels wide, its data come from the free_memory definition, and its color is red.

System Monitoring Utilities 45

* ——vertical-label sets the label to be printed along the y axis, and ——title
sets the main label for the whole graph.

* ——zoom specifies the zoom factor for the graph. This value must be greater than
Zero.

* ——x-grid specifies how to draw grid lines and their labels into the graph. Our
example places them every second, while major grid lines are placed every 4
seconds. Labels are placed every 10 seconds under the major grid lines.

Figure 2.2 Example Graph Created with RRDtool

Free System Memory in Time

GB
®
@

0.8 >
14:0‘7:1@ 14:07:20 14:07:30 14:07 :40 14:07:50

2.11.3 For More Information

RRDtool is a very complex tool with a lot of sub-commands and command line
options. Some of them are easy to understand, but you have to really study RRDtool
to make it produce the results you want and fine-tune them according to your liking.

Apart form RRDtool's man page (man 1 rrdtool) which gives you only basic
information, you should have a look at the RRDtool homepage [http://oss
.oetiker.ch/rrdtool/]. There is a detailed documentation [http://
oss.oetiker.ch/rrdtool/doc/index.en.html] of the
rrdtool command and all its sub-commands. There are also several tutorials
[http://oss.ocetiker.ch/rrdtool/tut/index.en.html]
to help you understand the common RRDtool workflow.

If you are interested in monitoring network traffic, have a look at MRTG [http://

oss.oetiker.ch/mrtg/]. It stands for Multi Router Traffic Grapher
and can graph the activity of all sorts of network devices. It can easily make use of
RRDtool.

46 System Analysis and Tuning Guide

http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/doc/index.en.html
http://oss.oetiker.ch/rrdtool/doc/index.en.html
http://oss.oetiker.ch/rrdtool/tut/index.en.html
http://oss.oetiker.ch/mrtg/
http://oss.oetiker.ch/mrtg/

Monitoring with Nagios

Nagios is a stable, scalable and extensible enterprise-class network and system
monitoring tool which allows administrators to monitor network and host resources
such as HTTP, SMTP, POP3, disk usage and processor load. Originally Nagios was
designed to run under Linux, but it can also be used on several UNIX operating
systems. This chapter covers the installation and parts of the configuration of Nagios
(http://www.nagios.org/).

3.1 Features of Nagios

The most important features of Nagios are:

* Monitoring of network services (SMTP, POP3, HTTP, NNTP, etc.).

* Monitoring of host resources (processor load, disk usage, etc.).

» Simple plug-in design that allows administrators to develop further service checks.

* Support for redundant Nagios servers.

3.2 Installing Nagios

Install Nagios either with zypper or using YaST.

For further information on how to install packages see:

Monitoring with Nagios 47

http://www.nagios.org/

* Paznen “Using Zypper” (I'naa 8, Managing Software with Command Line Tools,
TReference)

* Pazpen “Installing and Removing Packages or Patterns” (I'naBa 4, Installing or
Removing Software, TReference)

Both methods install the packages nagios and nagios-www. The later RPM
package contains a Web interface for Nagios which allows, for example, to view the
service status and the problem history. However, this is not absolutely necessary.

Nagios is modular designed and, thus, uses external check plug-ins to verify whether
a service is available or not. It is recommended to install the nagios—-plugin
RPM package that contains ready-made check plug-ins. However, it is also possible
to write your own, custom check plug-ins.

3.3 Nagios Configuration Files

Nagios organizes the configuration files as follows:

/etc/nagios/nagios.cfg
Main configuration file of Nagios containing a number of directives which
define how Nagios operates. See http://nagios.sourceforge
.net/docs/3_0/configmain.html for a complete
documentation.

/etc/nagios/resource.cfg
Containing path to all Nagios plug-ins (default: /usr/1lib/nagios/
plugins).

/etc/nagios/command.cfg
Defining the programs to be used to determine the availability of services or the
commands which are used to send e-mail notifications.

/etc/nagios/cgi.cfg
Contains options regarding the Nagios Web interface.

/etc/nagios/objects/

A directory containing object definition files. See Section 3.3.1, “Object
Definition Files” (page 49) for a more complete documentation.

48 System Analysis and Tuning Guide

http://nagios.sourceforge.net/docs/3_0/configmain.html
http://nagios.sourceforge.net/docs/3_0/configmain.html

3.3.1 Object Definition Files

In addition to those configuration files Nagios comes with very flexible and highly
customizable configuration files called Object Definition configuration files. Those
configuration files are very important since they define the following objects:

e Hosts
e Services
¢ Contacts

The flexibility lies in the fact that objects are easily enhanceable. Imagine you are
responsible for a host with only one service running. However, you want to install
another service on the same host machine and you want to monitor that service

as well. It is possible to add another service object and assign it to the host object

without huge efforts.

Right after the installation, Nagios offers default templates for object definition
configuration files. They can be found at /etc/nagios/objects .Inthe
following see a description on how hosts, services and contacts are added:

Example 3.1 A Host Object Definition

define host {

name SRV1
host_name SRV1
address 192.168.0.1
use generic-host
check_period 24x%7
check_interval 5
retry_interval 1
max_check_attempts 10
notification_period workhours
notification_interval 120
notification_options d,u,r

}

The host_name option defines a name to identify the host that has to be monitored.
address is the IP address of this host. The use statement tells Nagios to inherit
other configuration values from the generic-host template. check_period

defines whether the machine has to be monitored 24x7. check_interval makes
Nagios checking the service every 5 minutes and retry_interval tells Nagios
to schedule host check retries at 1 minute intervals. Nagios tries to execute the
checks multiple times when they do not pass. You can define how many attempts

Monitoring with Nagios 49

Nagios should do with the max_check_attempts directive. All configuration
flags beginning with not 1 fication handle how Nagios should behave when

a failure of a monitored service occurs. In the host definition above, Nagios

notifies the administrators only on working hours. However, this can be adjusted
with notification_period. Accordingto notification_interval
notifications will be resend every two hours. notification_options contains
four different flags: d, u, r and n. They control in which state Nagios should
notify the administrator. d stands for a down state, u for unreachable and r for
recoveries. n does not send any notifications anymore.

Example 3.2 A Service Object Definition

define service {

use generic-service

host_name SRV1

service_description PING

contact_groups router-admins

check_command check_ping!100.0,20%!500.0, 60%

The first configuration directive use tells Nagios to inherit from the generic-
service template. host_name is the name that assigns the service to the host
object. The host itself is defined in the host object definition. A description can be
set with service_description. In the example above the description is just
PING. Within the contact_groups option it is possible to refer to a group of
people who will be contacted on a failure of the service. This group and its members
are later defined in a contact group object definition. check__command sets the
program that checks whether the service is available, or not.

Example 3.3 A Contact and Contactgroup Definition

define contact |

contact_name admins

use generic-contact
alias Nagios Admin
email nagios@localhost

}

define contactgroup {

contactgroup_name router—-admins
alias Administrators
members admins

}

The example listing above shows the direct contact definition and its proper
contactgroup. The contact definition contains the e-mail address and the

50 System Analysis and Tuning Guide

name of the person who is contacted on a failure of a service. Usually this is the
responsible administrator. use inherits configuration values from the generic-contact
definition.

An overview of all Nagios objects and further information about them can be
found at: http://nagios.sourceforge.net/docs/3_0/
objectdefinitions.html

3.4 Configuring Nagios

Learn step-by-step how to configure Nagios to monitor different things like remote
services or remote host-resources.

3.4.1 Monitoring Remote Services with
Nagios

This section explains how to monitor remote services with Nagios. Proceed as
follows to monitor a remote service:

Procedure 3.1 Monitoring a Remote HTTP Service with Nagios

1 Create a directory inside /etc/nagios/objects using mkdir. You can
use any desired name for it.

2 Open /etc/nagios/nagios.conf and set cfg_dir (configuration
directory) to the directory you have created in the first step.

3 Change to the configuration directory created in the first step and create the
following files: hosts.cfg , services.cfg and contacts.cfg

4 Insert a host object in hosts.cfg :

define host {

name
host_name
address

use
check_period
check_interval
retry_interval

host.name.com
host.name.com
192.168.0.1
generic-host
24x7

5

1

Monitoring with Nagios 51

http://nagios.sourceforge.net/docs/3_0/objectdefinitions.html
http://nagios.sourceforge.net/docs/3_0/objectdefinitions.html

max_check_attempts 10

contact_groups admins
notification_interval 60
notification_options d,u, r

5 Insert a service object in services.cfg

define service {

use generic-service
host_name host .name.com
service_description HTTP
contact_groups router—-admins
check_command check_http

6 Insert a contact and contactgroup object in contacts.cfg

define contact {

contact_name max-mustermann

use generic-contact

alias Webserver Administrator
email mmustermann@localhost

}

define contactgroup {

contactgroup_name admins
alias Administrators
members max-mustermann

}

7 Execute rcnagios restart to (re)start Nagios.

8 Execute cat /var/log/nagios/nagios.log and verify whether the
following content appears:

1242115343] Nagios 3.0.6 starting... (PID=10915)
1242115343] Local time is Tue May 12 10:02:23 CEST 2009
1242115343] LOG VERSION: 2.0

1242115343] Finished daemonizing... (New PID=10916)

If you need to monitor a different remote service, it is possible to adjust
check_command in step Step 5 (page 52). A full list of all available check
programs can be obtained by executing 1s /usr/lib/nagios/plugins/
check_*

See Section 3.5, “Troubleshooting” (page 54) if an error occurred.

52 System Analysis and Tuning Guide

3.4.2 Monitoring Remote Host-Resources
with Nagios

This section explains how to monitor remote host resources with Nagios.

Proceed as follows on the Nagios server:

Procedure 3.2 Monitoring a Remote Host Resource with Nagios (Server)

Install nagios—-nsca (for example, zypper in nagios-nsca).

Set the following options in /etc/nagios/nagios.cfg

check_external_commands=1
accept_passive_service_checks=1
accept_passive_host_checks=1
command_file=/var/spool/nagios/nagios.cmd

Set the command_file optionin /etc/nagios/nsca.conf to the
same file defined in /etc/nagios/nagios.conf

Add another host and service object:

define host {

name foobar
host_name foobar
address 10.10.4.234
use generic-host
check_period 24x7
check_interval 0
retry_interval 1
max_check_attempts 1
active_checks_enabled 0
passive_checks_enabled 1

contact_groups
notification_interval
notification_options

}

define service {

router—admins
60
d,u, r

use generic-service
host_name foobar
service_description diskcheck
active_checks_enabled 0
passive_checks_enabled 1
contact_groups router—admins
check_command check_ping

Monitoring with Nagios 53

5 Execute rcnagios restart and rcnsca restart.

Proceed as follows on the client you want to monitor:
Procedure 3.3 Monitoring a Remote Host Resource with Nagios (client)

1 Install nagios—-nsca-client on the host you want to monitor.

2 Write your test scripts (for example a script that checks the disk usage) like this:
#!/bin/bash

NAGIOS_SERVER=10.10.4.166
THIS_HOST=foobar

#
Write own test algorithm here

#

Execute On SUCCESS:
echo "STHIS_HOST;diskcheck;0;0K: test ok" \
| send_nsca -H $NAGIOS_SERVER -p 5667 -c /etc/nagios/
send_nsca.cfg -d ";"

Execute On Warning:
echo "S$THIS_HOST;diskcheck;1;Warning: test warning" \

| send_nsca -H $NAGIOS_SERVER -p 5667 —-c /etc/nagios/
send_nsca.cfg -d ";"

Execute On FAILURE:
echo "S$THIS_HOST;diskcheck;2;CRITICAL: test critical" \

| send_nsca -H $NAGIOS_SERVER -p 5667 —-c /etc/nagios/
send_nsca.cfg -d ";"

3 Insert a new cron entry with crontab -—e. A typical cron entry could look like
this:
*/5 * * * * /directory/to/check/program/check_diskusage

3.5 Troubleshooting

Error: ABC 'XYZ' specified in ... '...' is not defined
anywhere!
Make sure that you have defined all necessary objects correctly. Be careful with
the spelling.

54 System Analysis and Tuning Guide

(Return code of 127 is out of bounds - plugin may be

missing)

Make sure that you have installed nagios-plugins.

E-mail notification does not work

Make sure that you have installed and configured a mail server like postfix
or exim correctly. You can verify if your mail server works with echo "Mail

Server Test!" |

mail foolbar.com which sends an e-mail to

foo@bar.com. If this e-mail arrives, your mail server is working correctly.
Otherwise, check the log files of the mail server.

3.6 For More Information

The complete Nagios documentation
http://nagios.sourceforge
.html

Object Configuration Overview
http://nagios.sourceforge
configobject.html

Object Definitions
http://nagios.sourceforge
objectdefinitions.html

Nagios Plugins
http://nagios.sourceforge
.html

.net/docs/3_0/toc

.net/docs/3_0/

.net/docs/3_0/

.net/docs/3_0/plugins

Monitoring with Nagios 55

http://nagios.sourceforge.net/docs/3_0/toc.html
http://nagios.sourceforge.net/docs/3_0/toc.html
http://nagios.sourceforge.net/docs/3_0/configobject.html
http://nagios.sourceforge.net/docs/3_0/configobject.html
http://nagios.sourceforge.net/docs/3_0/objectdefinitions.html
http://nagios.sourceforge.net/docs/3_0/objectdefinitions.html
http://nagios.sourceforge.net/docs/3_0/plugins.html
http://nagios.sourceforge.net/docs/3_0/plugins.html

Analyzing and Managing
System Log Files

System log file analysis is one of the most important tasks when analyzing the
system. In fact, looking at the system log files should be the first thing to do when
maintaining or troubleshooting a system. openSUSE automatically logs almost
everything that happens on the system in detail. Normally, system log files are
written in plain text and therefore, can be easily read using an editor or pager. They
are also parsable by scripts, allowing you to easily filter their content.

4.1 System Log Files in /var/log/

System log files are always located under the /var/log directory. The following
list presents an overview of all system log files from openSUSE present after

a default installation. Depending on your installation scope, /var/log also
contains log files from other services and applications not listed here. Some files
and directories described below are “placeholders” and are only used, when the
corresponding application is installed. Most log files are only visible for the user
root.

acpid
Log of the advanced configuration and power interface event daemon (acpid),
a daemon to notify user-space programs of ACPI events. acpid will log all of
its activities, as well as the STDOUT and STDERR of any actions to syslog.

apparmor
Novell AppArmor log files. See Yactp “Orpannuenuie npusuieruii ¢ Novell
AppArmor” (TPykoBozacTso no 6e3omnacHoctr) for details of AppArmor.

Analyzing and Managing System Log Files 57

audit
Logs from the audit framework.

boot .msg
Log of the system init process - this file contains all boot messages from the
kernel, the boot scripts and the services started during the boot sequence.

Check this file to find out whether your hardware has been correctly initialized
or all services have been started successfully.

boot .omsg
Log of the system shutdown process - this file contains all messages issued on
the last shutdown or reboot.

ConsoleKit/*
Logs of the ConsoleKit daemon (daemon for tracking what users are logged
in and how they interact with the computer).

cups/
Access and error logs of the common UNIX printing system (cups).

faillog
Database file that contains all login failures. Use the faillog command to
view. See man 8 faillog for more information.

firewall
Firewall logs.

gdm/ *
Log files from the GNOME display manager.

krbb
Log files from the Kerberos network authentication system.

lastlog
The lastlog file is a database which contains info on the last login of each
user. Use the command lastlog to view. Seeman 8 lastlog for more
information.

localmessages
Log messages of some boot scripts, for example the log of the DHCP client.

mail*
Mail server (postfix, sendmail) logs.

58 System Analysis and Tuning Guide

messages
This is the default place where all kernel and system log messages go and
should be the first place (along with /var/log/warn)to look at in case of
problems.

NetworkManager
NetworkManager log files

news/*
Log messages from a news server.

Logs from the Network Time Protocol daemon (ntpd).

pk_backend_zypp
PackageKit (with 1ibzypp backend) log files.

puppet/*
Log files from the data center automation tool puppet.

samba/*
Log files from samba, the Windows SMB/CIFS file server.

SaX.log
Logs from SaX2, the SUSE advanced X11 configuration tool.

scpm
Logs from the system configuration profile management (scpm).

warn
Log of all system warnings and errors. This should be the first place (along with
/var/log/messages) tolook atin case of problems.

wtmp
Database of all login/logout activities, runlevel changes and remote connections.
Use the command last to view. See man 1 last for more information.

xinetd.log
Log files from the extended Internet services daemon (xinetd).

Xorg.0.log
X startup log file. Refer to this in case you have problems starting X. Copies
from previous X starts are numbered Xorg. ?.log.

Analyzing and Managing System Log Files 59

YaST2/*
All YaST log files.

zypp/*
libzypp log files. Refer to these files for the package installation history.

zypper.log
Logs from the command line installer zypper.

4.2 Viewing and Parsing Log Files

To view log files, you can use your favorite text editor. There is also a simple YaST
module for viewing /var/log/messages , available in the YaST Control
Center under Miscellaneous > System Log.

For viewing log files in a text console, use the commands less or more. Use head
and tail to view the beginning or end of a log file. To view entries appended to a
log file in real-time use tail -£. For information about how to use these tools, see
their man pages.

To search for strings or regular expressions in log files use grep. awk is useful for
parsing and rewriting log files.

4.3 Managing Log Files with
logrotate

Log files under /var/log grow on a daily basis and quickly become very big.
logrotate is a tool for large amounts of log files and helps you to manage these
files and to control their growth. It allows automatic rotation, removal, compression,
and mailing of log files. Log files can be handled periodically (daily, weekly, or
monthly) or when exceeding a particular size.

logrotate is usually run as a daily cron job. It does not modify any log files
more than once a day unless the log is to be modified because of its size, because
logrotate is being run multiple times a day, or the ——force option is used.

The main configuration file of logrotateis /etc/logrotate.conf
System packages as well as programs that produce log files (for example, apache?2)
put their own configuration files in the /etc/logrotate.d/ directory.

60 System Analysis and Tuning Guide

The content of /etc/logrotate.d/ isincluded via /etc/logrotate
.conf

Example 4.1 Example for /etc/logrotate.conf

see "man logrotate" for details
rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

create new (empty) log files after rotating old ones
create

use date as a suffix of the rotated file
dateext

uncomment this if you want your log files compressed
#compress

comment these to switch compression to use gzip or another
compression scheme

compresscmd /usr/bin/bzip2

uncompresscmd /usr/bin/bunzip2

RPM packages drop log rotation information into this directory
include /etc/logrotate.d

IMPORTANT

The create option pays heed to the modes and ownerships of files
specified in /etc/permissions* . If you modify these settings, make
sure no conflicts arise.

logrotate is controlled through cron and is called daily by /etc/cron
.daily/logrotate .Use/var/lib/logrotate.status to find
out when a particular file has been rotated lastly.

4.4 Monitoring Log Files with
logwatch

logwatch is a customizable, pluggable log-monitoring script. It parses system logs,
extracts the important information and presents them in a human readable manner.
To use Logwatch, install the 1ogwatch package.

Analyzing and Managing System Log Files 61

logwatch can either be used at the command-line to generate on-the-fly reports,
or via cron to regularly create custom reports. Reports can either be printed on the
screen, saved to a file, or be mailed to a specified address. The latter is especially
useful when automatically generating reports via cron.

The command-line syntax is easy. You basically tell Llogwatch for which service,
time span and to which detail level to generate a report:

Detailed report on all kernel messages from yesterday
logwatch --service kernel --detail High --range Yesterday --print

Low detail report on all sshd events recorded (incl. archived logs)
logwatch --service sshd --detail Low --range All --archives —--print

Mail a report on all smartd messages from May 5th to May 7th to root@localhost
logwatch —--service smartd —--range 'between 5/5/2005 and 5/7/2005' \
—-mailto root@localhost --print

The ——range option has got a complex syntax—see logwatch --range
help for details. A list of all services that can be queried is available with the
following command:

ls /usr/share/logwatch/default.conf/services/ | sed 's/\.conf//g'

logwatch can be customized to great detail. However, the default configuration
should be sufficient in most cases. The default configuration files are located
under /usr/share/logwatch/default.conf/ . Never change
them because they would get overwritten again with the next update. Rather place
custom configuration in /etc/logwatch/conf/ (you may use the default
configuration file as a template, though). A detailed HOWTO on customizing
logwatch is available at /usr/share/doc/packages/logwatch/
HOWTO-Customize-LogWatch . The following config files exist:

logwatch.conf
The main configuration file. The default version is extensively commented. Each
configuration option can be overwritten on the command line.

ignore.conf
Filter for all lines that should globally be ignored by 1ogwatch.

services/*.conf

The service directory holds configuration files for each service you can generate
a report for.

62 System Analysis and Tuning Guide

logfiles/*.conf
Specifications on which log files should be parsed for each service.

Analyzing and Managing System Log Files 63

Part lll. Kernel Monitoring

SystemTap—Filtering and
Analyzing System Data

SystemTap provides a command line interface and a scripting language to examine
the activities of a running Linux system, particularly the kernel, in fine detail.
SystemTap scripts are written in the SystemTap scripting language, are then
compiled to C-code kernel modules and inserted into the kernel. The scripts can

be designed to extract, filter and summarize data, thus allowing the diagnosis

of complex performance problems or functional problems. SystemTap provides
information similar to the output of tools like net stat, ps, top, and iostat.
However, more filtering and analysis options can be used for the collected
information.

Basically, there are two different setups for using SystemTap:

Classic Setup and Initial Test (page 71)
Have the SystemTap script compiled and the resulting kernel modules inserted
on the same machine. This requires the machine to have the kernel debugging
information installed.

Client-Server Setup (page 73)
If the machine you want to probe does not have any development tools or kernel
debugging information installed for any reason, you can make use of this setup.
It allows you to compile a SystemTap module on a machine other than the one
on which it will be run.

SystemTap—Filtering and Analyzing System Data 67

5.1 Conceptual Overview

Each time you run a SystemTap script, a SystemTap session is started. A number
of passes are done on the script before it is allowed to run, at which point the script
is compiled into a kernel module and loaded. In case the script has already been
executed before and no changes regarding any components have occurred (for
example, regarding compiler version, kernel version, library path, script contents),
SystemTap does not compile the script again, but uses the *.c and *.ko data
stored in the SystemTap cache (~/ . systemtap). The module is unloaded
when the tap has finished running. For an example, see the test run in Section 5.2.1,
“Classic Setup and Initial Test” (page 71) and the respective explanation.

5.1.1 SystemTap Scripts

SystemTap usage is based on SystemTap scripts (* . stp). They tell SystemTap
which type of information to collect, and what to do once that information is
collected. The scripts are written in the SystemTap scripting language that is similar
to AWK and C. For the language definition, see http://sourceware.org/
systemtap/langref/

The essential idea behind a SystemTap script is to name events, and to give them
handlers. When SystemTap runs the script, it monitors for certain events. When
an event occurs, the Linux kernel runs the handler as a sub-routine, then resumes.
Thus, events serve as the triggers for handlers to run. Handlers can record specified
data and print it in a certain manner.

The SystemTap language only uses a few data types (integers, strings, and
associative arrays of these), and full control structures (blocks, conditionals, loops,
functions). It has a lightweight punctuation (semicolons are optional) and does not
need detailed declarations (types are inferred and checked automatically).

For more information about SystemTap scripts and their syntax, refer to Section 5.3,
“Script Syntax” (page 81) and to the stapprobes and stapfuncs man
pages, that are available with the systemtap-doc package.

5.1.2 Tapsets

Tapsets are a library of pre-written probes and functions that can be used in
SystemTap scripts. When a user runs a SystemTap script, SystemTap checks the

68 System Analysis and Tuning Guide

http://sourceware.org/systemtap/langref/
http://sourceware.org/systemtap/langref/

script's probe events and handlers against the tapset library. SystemTap then loads
the corresponding probes and functions before translating the script to C. Like
SystemTap scripts themselves, tapsets use the filename extension * . stp .

However, unlike SystemTap scripts, tapsets are not meant for direct execution—they
constitute the library from which other scripts can pull definitions. Thus, the tapset
library is an abstraction layer designed to make it easier for users to define events
and functions. Tapsets provide useful aliases for functions that users may want to
specify as an event (knowing the proper alias is mostly easier than remembering
specific kernel functions that might vary between kernel versions).

5.1.3 Commands and Privileges

The main commands associated with SystemTap are stap and staprun. To
execute them, you either need root privileges or must be a member of the
stapdev or stapusr group.

stap
SystemTap front-end. Runs a SystemTap script (either from file, or from
standard input). It translates the script into C code, compiles it, and loads the
resulting kernel module into a running Linux kernel. Then, the requested system
trace or probe functions are performed.

staprun
SystemTap back-end. Loads and unloads kernel modules produced by the
SystemTap front-end.

For a list of options for each command, use ——he1p. For details, refer to the stap
and the staprun man pages.

Apart from the commands above which are used in a setup where you build

the kernel modules on the same machine that you want to probe, there is also a
specific set of commands for a client-server setup: systemtap-client and
systemtap-server, the latter containing a number of subcommands. This set of
commands allows you to compile a SystemTap module on a machine other than the
one on which it will be run. For more information about this specific setup and the
commands involved, refer to Section 5.2, “Installation and Setup” (page 71) and

to the stap-server and stap—client man pages.

To avoid giving root access to users just for running SystemTap, you can make
use of the following SystemTap groups. They are not available by default on

SystemTap—Filtering and Analyzing System Data 69

SUSE Linux Enterprise, but you can create the groups and modify the access rights
accordingly.

stapdev
Members of this group can run SystemTap scripts with stap, or run SystemTap
instrumentation modules with staprun. As running stap involves compiling
scripts into kernel modules and loading them into the kernel, members of this
group still have effective root access.

stapusr
Members of this group are only allowed to run SystemTap instrumentation
modules with staprun. In addition, they can only run those modules from /
lib/modules/ kernel_version /systemtap/ . This directory
must be owned by root and must only be writable for the root user.

5.1.4 Important Files and Directories

The following list gives an overview of the SystemTap main files and directories.

/lib/modules/ kernel_version /systemtap/
Holds the SystemTap instrumentation modules.

/usr/share/systemtap/tapset/
Holds the standard library of tapsets.

/usr/share/doc/packages/systemtap/examples
Holds a number of example SystemTap scripts for various purposes. Only
available if the systemtap-doc package is installed.

~/.systemtap/cache
Data directory for cached SystemTap files.

/tmp/stap*
Temporary directory for SystemTap files, including translated C code and kernel
object.

If you use the SystemTap client-server setup, the following directories are also
important:

/etc/systemtap/ssl/server
Public SystemTap server certificate and key database. Used if the SystemTap
server is set up under root's account.

70 System Analysis and Tuning Guide

/etc/systemtap/ssl/client
SystemTap client-side certificate database. Only located in this directory if a
SystemTap server is authorized as trusted for all SystemTap clients running on
this machine.

~/.systemtap/ssl/server
Private SystemTap server certificate and key database. Used if the SystemTap
server is not running under a root account, but under a regular user's account.
Usually, a dedicated user named stap-server is created for that purpose.

~/.systemtap/ssl/client
Client-side certificate database, located in a regular user's home directory. Only
located in this directory if a SystemTap server has been authorized as trusted for
SystemTap clients run by this specific user.

/var/log/stap-server.log
Default SystemTap server log file.

5.2 Installation and Setup

Depending on your preferred setup, check the sections below for an overview of the
packages you need. As SystemTap needs information about the kernel, some kernel-
related packages must be installed in addition to the SystemTap packages. For each
kernel you want to probe with SystemTap, you need to install a set of the following
packages that exactly matches the kernel version and flavor (indicated by * in the
tables below).

IMPORTANT: Repository for Packages with Debugging Information

If you subscribed your system for online updates, you can find “debuginfo”
packages in the *-Debuginfo-Updates online installation repository
relevant for openSUSE 11.4. Use YaST to enable the repository.

To get access to the man pages and to a helpful collection of example SystemTap
scripts for various purposes, additionally install the systemtap-doc package.

5.2.1 Classic Setup and Initial Test

For this setup, install the following packages (using either YaST or zypper).

SystemTap—Filtering and Analyzing System Data 71

* systemtap

* systemtap-client

* systemtap-—-server

* systemtap-doc (optional)
* kernel-*-base

* kernel-*-debuginfo

* kernel-*-devel

* kernel-source—*

* gcc

To check if all packages are correctly installed on the machine and if SystemTap is
ready to use, execute the following command as root.

stap -v —e 'probe vfs.read {printf ("read performed\n"); exit ()}

It probes the currently used kernel by running a script and returning an output. If the
output is similar to the following, SystemTap is successfully deployed and ready to
use:

Pass @®: parsed user script and 59 library script(s) in 80usr/Osys/214real ms.

Pass @®: analyzed script: 1 probe(s), 11 function(s), 2 embed(s), 1 global(s) in
140usr/20sys/412real ms.

Pass ®: translated to C into
"/tmp/stapDwEk76/stap_1856e2lealc246da85ad8c66b4338349_4970.c" in
160usr/0sys/408real ms.

Pass ®: compiled C into "stap_1856e2lealc246da85ad8c66b4338349_4970.ko" in
2030usr/360sys/10182real ms.

Pass @®: starting run.
read performed

Pass ®: run completed in 10usr/20sys/257real ms.

@ Checks the script against the existing tapset library in /usr/share/
systemtap/tapset/ for any tapsets used. Tapsets are scripts that form
a library of pre-written probes and functions that can be used in SystemTap
scripts.

® Examines the script for its components.

® Translates the script to C. Runs the system C compiler to create a kernel
module from it. Both the resulting C code (* . ¢) and the kernel module (*
.ko) are stored in the SystemTap cache, ~/.systemtap

72 System Analysis and Tuning Guide

® Loads the module and enables all the probes (events and handlers) in the script
by hooking into the kernel. The event being probed is a Virtual File System
(VES) read. As the event occurs on any processor, a valid handler is executed
(prints the text read performed) and closed with no errors.

® After the SystemTap session is terminated, the probes are disabled, and the
kernel module is unloaded.

In case any error messages appear during the test, check the output for hints about
any missing packages and make sure they are installed correctly. Rebooting and
loading the appropriate kernel may also be needed.

5.2.2 Client-Server Setup

A SystemTap compile server listens for connections from SystemTap clients on a
secure SSL network port and accepts requests to run the SystemTap front-end. The
server advertises its presence and configuration on the local network using avahi (a
free Zeroconf implementation that allows programs to publish and discover services
and hosts in a local network without any specific configuration). The compile server
broadcasts its IP address, port, and details about the Linux kernel it runs. Thus, the
SystemTap client can automatically detect a compile server on the network that is
compatible to the client's kernel version.

As SystemTap exposes kernel internal data structures and potentially private user
information, it provides several layers of security:

* A separate front-end (stap) and back-end (staprun), with only the front-end
requiring access to kernel information packages for compiling the SystemTap
script into C code and for creating a kernel module. For more information, refer to
Section 5.1.3, “Commands and Privileges” (page 69).

* An encrypted network connection between SystemTap client and server via SSL.
The SSL connection is based on certificates and key pairs consisting of public and

private keys.

» Users or system administrators can authorize SystemTap servers on the network as
“trusted”.

» Use of SystemTap groups with different privileges. For more information, refer to
Section 5.1.3, “Commands and Privileges” (page 69).

SystemTap—Filtering and Analyzing System Data 73

Installing SystemTap
For this setup, install the following packages (using YaST or zypper):
Client

* systemtap

* systemtap-client

* systemtap-doc (optional)

* systemtap

* systemtap—-server

¢ kernel-*-debuginfo
* kernel-*-devel

* kernel-source—*

* gcc

Setting Up the Server

You have two choices for setting up the SystemTap compile server: you can run it
as root or as non-root user. This has implications on the certificate management
on server- and client-side and on the process of establishing a given compile server
as trusted by a given client. For the SSL connection between the compile server and
the SystemTap client, you need to create a certificate for authentication. Depending
on how the SystemTap compile server is set up (as root or as non-root), the
location of the server certificate differs. When set up as root user, the certificate is
stored in a database at /etc/systemtap/ssl/server . However, when
the compile server is set up as non-root (usually by the user stap—-server), the
server certificate is stored in a database in the systemtap—-server user's home
directory: ~/ .systemtap/ssl/server

Procedure 5.1 Running the Compile Server as Non-root User

For this setup, it is advisable to create a dedicated system group and user for the
compile server.

74 System Analysis and Tuning Guide

Log in as root.

Create a home directory for the compile server user, for example:

mkdir /var/lib/stapserver

Add a system group for the operation of the compile server. In the following
example, the group is named stap-server and the group ID (GID) is 155, but
you can also specify a different group name or GID:

groupadd -g 155 -r stap-server

Add a user belonging to the group you created before and specify the user's home
directory:
useradd -c "SystemTap Compile Server" -u 155 -g stap-server -d \ /var/

lib/stapserver -m -r -s /sbin/nologin stap-server

The command above will create a user named stap—-server with the user ID
155. The user's finger information is specified with —c and the options —g and
—d specify the user's main group (stap-server) and his home directory you
created in Step 2 (page 75), respectively. The user account will be a system
account (specified with —r) and the user will not be able to log in, as his login
shell is set to /sbin/nologin with the —s option.

Change the owner and the group for the home directory to use:

chown -R stap-server.stap-server /var/lib/stapserver/

Run a shell as user stap—server and pass the stap—gen-cert command to
generate a SystemTap certificate:

su -s /bin/sh - stap-server -c /usr/bin/stap-gen-cert

You are prompted to set a password for the SystemTap server certificate and key
database.

Enter a password for the SystemTap server certificate and confirm it.
This generates a certificate (stap.cert) thatis stored in the systemtap—
server user's home directory—in this case: /var/1lib/stapserver/

.systemtap/ssl/server

Start the compile server with:

su -s /bin/sh - stap-server -c /usr/bin/stap-start-server

SystemTap—Filtering and Analyzing System Data 75

Upon first start of the compile server, this creates a client-side certificate database
in the systemtap-server user's home directory (~/ .systemtap/
ssl/client) to which the server's certificate has now automatically been
added. Thus, a server started by the user stap-server is automatically trusted
by clients run by that user.

Procedure 5.2 Running the Compile Server as root User

Compared to Procedure 5.1, “Running the Compile Server as Non-root User”
(page 74), this setup is much simpler but it has security implications.

WARNING: Security Risk

In the following setup, the compile server certificate is stored in /etc/
systemtap/ssl/server , together with the client-side database
located at /etc/systemtap/ssl/client . As these files are
accessible for anyone, anyone can run the stap-client command,
thus potentially exposing kernel internal data structures and private user
information.

1 Loginas root.

2 Create a SystemTap certificate by executing the following command:

/usr/bin/stap-gen-cert

You are prompted to set a password for the SystemTap server certificate and key
database.

3 Enter a password and confirm it.

The certificate (stap.cert)is generated. In contrast to the setup as
non-root, it is stored in a database located at /etc/systemtap/ssl/
server .

4 Start a SystemTap server on the local host by using the following command:

/usr/bin/stap-start-server

At the same time, a client-side certificate database is created at /etc/
systemtap/ssl/client . The server certificate is automatically added to
the client-side certificate database.

76 System Analysis and Tuning Guide

The client-side certificate database created for root is also the global client-side
database for all clients on the host. Thus, a server started by root is automatically
trusted by clients run by any user on that host: Any user can now compile kernel
modules on the compile server using the stap-client command. For more
information about the security implications, see the Safety and Security section of the
stap-server man page.

Setting Up the Client

To be able to invoke stap—client from another host, you need to copy the
certificate that has been created on the server to the client and to authorize the
compile server as trusted for the client. The location of the original server certificate
to copy depends on how the SystemTap compile server has been set up. For the
authorization process you can choose to either authorize the compile server as trusted
for all SystemTap clients running on that machine or only for clients that are run by a
specific user.

1 Log in to the client machine.

2 If you have set up the compile server as non-root, copy the server certificate to
the client machine as follows:
scp root@servername:~stap-server/.systemtap/ssl/server/stap.cert \ /tmp/

stap.cert

3 If you have set up the compile server as root, copy the server certificate to the
client machine as follows:

scp root@servername:/etc/systemtap/ssl/server/stap.cert /tmp/stap.cert

4 If you want to authorize the compile server as trusted for all SystemTap clients
running on that machine (no matter by which user), execute the following
command as root:

/usr/bin/stap-authorize-server-cert /tmp/stap.cert

In this case, the server certificate will be added to the client-side certificate
database (/etc/systemtap/ssl/client).

5 If you want to authorize the compile server only as trusted for SystemTap clients
on that machine that are run by a specific user, execute the following command as
regular user:

/usr/bin/stap-authorize-server-cert /tmp/stap.cert

SystemTap—Filtering and Analyzing System Data 77

In that case, the server certificate will be added to the client-side certificate
database for that user (~/ .systemtap/ssl/client).

6 Remove the copied certificate from the /tmp directory:
rm /tmp/stap.cert

Using the Client

After you have set up the SystemTap compile server and client as described in the
previous sections, you can make use of the stap—client program. It is analogous
to the stap front-end, except that it tries to find a compatible SystemTap compile
server on the local network. It then uses this server for compiling the SystemTap
script into a module, loading the kernel module and enabling the probes (passes

1-4 of a SystemTap session). If requested, pass 5 actions are performed on the
localhost using st aprun. For more information about a SystemTap session and the
individual passes, see Section 5.2.1, “Classic Setup and Initial Test” (page 71).

NOTE: Executing stap-client

You can run stap-client either as root or as non-root. If run as
non-root, the underlying staprun command needs to be suid and the
user executing stap-client must be a member of the stapdev group.
For more information, refer to Section 5.1.3, “Commands and Privileges”
(page 69).

Usually, a running SystemTap compile server on the local network advertises its
presence using avahi and is automatically detected by the SystemTap client. The
following procedure illustrates how to make use of the SystemTap client-server setup
and covers the most common commands and options needed for that.

1 To make sure that a compatible SystemTap server is running on your local

network, execute the following command on the SystemTap client:
stap-find-servers

This invokes avahi-browse to find servers. The details of any servers found
are echoed to standard output. If this command does not return anything, no
compatible SystemTap server can be found on your network.

2 In this case, log in to the compile server and run
stap—-start-server

78 System Analysis and Tuning Guide

This starts avahi-publish-service in the background. The server listens for
connections on a random port and advertises its presence on the local network
using the avahi daemon. If the server is started successfully, the process ID of the
server is echoed to standard output.

Note that stap-start—-server does not work for the initial setup as described
in Procedure 5.2, “Running the Compile Server as root User” (page 76),

where /usr/bin/stap-serverdisused instead. stap—-start-server
puts the server in the background—thus, you would not see the prompt asking for

the server certificate password.
ps —ef | grep avahi

should now return an output similar to the following:

avahi 3300 1 0 15:14 2 00:00:00 avahi-daemon: running [linux-48zp.local]
root 4687 4655 0 18:03 ttySO 00:00:00 avahi-publish-service Systemtap Compile Se
root 4700 4160 0 18:05 ttySO 00:00:00 grep avahi

3 To run a simple test, execute the following command on the SystemTap client:
stap-client -e 'probe begin { printf ("Hello"); exit(); 1}’

This compiles and executes a simple example on any compatible SystemTap
server found on the local network. If the test is successful, it prints “Hello” to
standard output.

Instead of using any compatible server found on the network, you can also determine
which SystemTap server to contact and use. To do so, run the stap-client
command with the ——server option. It lets you specify the hostname or IP address
of the SystemTap server, optionally also a port (which is useful fore connecting

to non-local servers). For more information and details about the other available
commands and options, refer to the stap—-server and stap—-client man pages.

Troubleshooting

There are several things that can go wrong when using the SystemTap client-server
setup. If you have difficulties establishing a connection between SystemTap client
and server or running stap-client, proceed according to the following list.

Compatible SystemTap Compile Server Available?
If stap—client reports that it is unable to find a server, check if a compatible
SystemTap compile server is available:

SystemTap—Filtering and Analyzing System Data 79

stap-find-servers

If this command does not return anything, no compatible SystemTap server can
be found on your network.

SystemTap Compile Server Running?
To make sure that the SystemTap compile server is running, log in to the server
and run

stap—-server—-start

If the server is started successfully, the process ID of the server is echoed to
standard output.

Avabhi Installed?
The SystemTap client-server setup depends on avahi for automatically
announcing the presence and configuration of any SystemTap servers in the
network and on client-side for automatically detecting a compatible server. As a
consequence, the following packages are usually automatically installed together
with the systemtap-server and systemtap-client packages:

e avahi
e avahi-utils

Check if the packages are installed with

rpm -ga | grep avahi
If not, install them with YaST or zypper.

Avahi Daemon Running?
Check if the avahi daemon is running:

/etc/init.d/avahi-daemon status

If not, start it with

/etc/init.d/avahi-daemon start

Also check if the avahi daemon was configured to be started automatically at
runlevels 3 and 5:

chkconfig -1 avahi-daemon

This should return the following output:

avahi-daemon O:o0ff 1:0ff 2:0ff 3:on 4:0ff 5:on
6:0ff

80 System Analysis and Tuning Guide

If not, configure this option with

chkconfig avahi-daemon 35

Virtual Machine: Bridged Network?
If you are running SystemTap in a virtual machine setup, make sure the network
has been bridged, otherwise broadcasting via avahi will not work.

Certificate Not Found?
If running an stap-client command fails because the certificate database
was not found, check if you have set up the SystemTap client correctly. For
details, refer to Section “Setting Up the Client” (page 77).

5.3 Script Syntax

SystemTap scripts consist of the following two components:

SystemTap Events (Probe Points) (page 82)
Name the kernel events at the associated handler should be executed. Examples
for events are entering or exiting a certain function, a timer expiring, or starting
or terminating a session.

SystemTap Handlers (Probe Body) (page 84)
Series of script language statements that specify the work to be done whenever
a certain event occurs. This normally includes extracting data from the event
context, storing them into internal variables, or printing results.

An event and its corresponding handler is collectively called a probe. SystemTap
events are also called probe points. A probe's handler is also referred to as
probe body.

Comments can be inserted anywhere in the SystemTap script in various styles: using
either #, /* */,or // as marker.

5.3.1 Probe Format

A SystemTap script can have multiple probes. They must be written in the following
format:

SystemTap—Filtering and Analyzing System Data 81

probe event {statements}

Each probe has a corresponding statement block. This statement block must be
enclosed in { } and contains the statements to be executed per event.

Example 5.1 Simple SystemTap Script

The following example shows a simple SystemTap script.

probe® begin®

{®
printf@® ("hello world\n")®
exit ()®

10

Start of the probe.

Event begin (the start of the SystemTap session).

Start of the handler definition, indicated by {.

First function defined in the handler: the print £ function.

String to be printed by the print £ function, followed by a line break (/n).

@ & © @ ® @

Second function defined in the handler: the exit () function. Note that the
SystemTap script will continue to run until the exit () function executes. If
you want to stop the execution of the script before, stop it manually by pressing
Ctrl + C.

©® End of the handler definition, indicated by }.
The event begin @ (the start of the SystemTap session) triggers the handler

enclosed in { }, in this case the printf function @ which prints hello world
followed by a new line ®, then exits.

If your statement block holds several statements, SystemTap executes these
statements in sequence—you do not need to insert special separators or terminators
between multiple statements. A statement block can also be nested within another
statement blocks. Generally, statement blocks in SystemTap scripts use the same
syntax and semantics as in the C programming language.

5.3.2 SystemTap Events (Probe Points)
SystemTap supports a number of built-in events.

82 System Analysis and Tuning Guide

The general event syntax is a dotted-symbol sequence. This allows a breakdown
of the event namespace into parts. Each component identifier may be parametrized
by a string or number literal, with a syntax like a function call. A component may
include a * character, to expand to other matching probe points. A probe point
may be followed by a 2 character, to indicate that it is optional, and that no error
should result if it fails to expand. Alternately, a probe point may be followed by a !
character to indicate that it is both optional and sufficient.

SystemTap supports multiple events per probe—they need to be separated by a
comma (,). If multiple events are specified in a single probe, SystemTap will
execute the handler when any of the specified events occur.

In general, events can be classified into the following categories:

* Synchronous events: Occur when any process executes an instruction at a
particular location in kernel code. This gives other events a reference point
(instruction address) from which more contextual data may be available.

An example for a synchronous eventis vfs. file_operation: The entry
to the file_operation event for Virtual File System (VES). For example,
in Section 5.2.1, “Classic Setup and Initial Test” (page 71), read is the
file_operation event used for VES.

* Asynchronous events: Not tied to a particular instruction or location in code. This
family of probe points consists mainly of counters, timers, and similar constructs.

Examples for asynchronous events are: begin (start of a SystemTap session—
as soon as a SystemTap script is run, end (end of a SystemTap session), or timer
events. Timer events specify a handler to be executed periodically, like example
timer.s (seconds),ortimer.ms (milliseconds).

When used in conjunction with other probes that collect information, timer events
allow you to print out periodic updates and see how that information changes over
time.

Example 5.2 Probe with Timer Event

For example, the following probe would print the text “hello world” every 4 seconds:

probe timer.s (4)

{
printf ("hello world\n")

}

SystemTap—Filtering and Analyzing System Data 83

For detailed information about supported events, refer to the stapprobes man
page. The See Also section of the man page also contains links to other man pages
that discuss supported events for specific subsystems and components.

5.3.3 SystemTap Handlers (Probe Body)

Each SystemTap event is accompanied by a corresponding handler defined for that
event, consisting of a statement block.

Functions

If you need the same set of statements in multiple probes, you can place them in a
function for easy reuse. Functions are defined by the keyword function followed
by a name. They take any number of string or numeric arguments (by value) and may
return a single string or number.

function function_name (arguments) {statements}
probe event {function_name(arguments)}

The statements in function_name are executed when the probe for event
executes. The argument s are optional values passed into the function.

Functions can be defined anywhere in the script. They may take any

One of the functions needed very often was already introduced in Example 5.1,
“Simple SystemTap Script” (page 82): the print £ function for printing data in

a formatted way. When using the print f function, you can specify how arguments
should be printed by using a format string. The format string is included in quotation
marks and can contain further format specifiers, introduced by a % character.

Which format strings to use depends on your list of arguments. Format strings can
have multiple format specifiers—each matching a corresponding argument. Multiple
arguments can be separated by a comma.

Example 5.3 printf Function with Format Specifiers

printf ("@%s® (%d®) open\n®", execname (), pid())

@ Start of the format string, indicated by ".
String format specifier.

Integer format specifier.

@0

End of the format string, indicated by ".

84 System Analysis and Tuning Guide

The example above would print the current executable name (execname ()) as
string and the process ID (pid ()) as integer in brackets, followed by a space, then
the word open and a line break:

[...]

vmware—-guestd (2206) open
hald(2360) open

[...]

Apart from the two functions execname () and pid ()) used in Example 5.3,
“printf Function with Format Specifiers” (page 84), a variety of other
functions can be used as print f arguments.

Among the most commonly used SystemTap functions are the following:

tid()
ID of the current thread.

pid()
Process ID of the current thread.

uid()
ID of the current user.

cpu()
Current CPU number.

execname()
Name of the current process.

gettimeofday_s()
Number of seconds since UNIX epoch (January 1, 1970).

ctime()
Convert time into a string.

ppO
String describing the probe point currently being handled.

thread_indent()
Useful function for organizing print results. It (internally) stores an indentation
counter for each thread (tid ()). The function takes one argument, an

SystemTap—Filtering and Analyzing System Data 85

indentation delta, indicating how many spaces to add or remove from the thread's
indentation counter. It returns a string with some generic trace data along with an
appropriate number of indentation spaces. The generic data returned includes a
timestamp (number of microseconds since the initial indentation for the thread),
a process name, and the thread ID itself. This allows you to identify what
functions were called, who called them, and how long they took.

Call entries and exits often do not immediately precede each other (otherwise it
would be easy to match them). In between a first call entry and its exit, usually

a number of other call entries and exits are made. The indentation counter helps
you match an entry with its corresponding exit as it indents the next function call
in case it is not the exit of the previous one. For an example SystemTap script
using thread_indent () and the respective output, refer to the SystemTap
Tutorial: http://sourceware.org/systemtap/tutorial/
Tracing.html#fig:socket-trace

For more information about supported SystemTap functions, refer to the
stapfuncs man page.

Other Basic Constructs

Apart from functions, you can use several other common constructs in SystemTap
handlers, including variables, conditional statements (like i f/else, while loops,
for loops, arrays or command line arguments.

Variables

Variables may be defined anywhere in the script. To define one, simply choose a
name and assign a value from a function or expression to it:

foo = gettimeofday()

Then you can use the variable in an expression. From the type of values assigned

to the variable, SystemTap automatically infers the type of each identifier (string or
number). Any inconsistencies will be reported as errors. In the example above, foo
would automatically be classified as a number and could be printed via printf ()
with the integer format specifier ($d).

However, by default, variables are local to the probe they are used in: They are
initialized, used and disposed of at each handler evocation. To share variables

86 System Analysis and Tuning Guide

http://sourceware.org/systemtap/tutorial/Tracing.html#fig:socket-trace
http://sourceware.org/systemtap/tutorial/Tracing.html#fig:socket-trace

between probes, declare them global anywhere in the script. To do so, use the
global keyword outside of the probes:

Example 5.4 Using Global Variables

global count_jiffies, count_ms
probe timer.jiffies(100) { count_jiffies ++ }
probe timer.ms (100) { count_ms ++ }
probe timer.ms (12345)
{
hz=(1000*count_jiffies) / count_ms
printf ("jiffies:ms ratio %d:%d => CONFIG_HZ=%d\n",
count_jiffies, count_ms, hz)
exit ()

t

This example script computes the CONFIG_HZ setting of the kernel by using timers
that count jiffies and milliseconds, then computing accordingly. (A jiffy is the
duration of one tick of the system timer interrupt. It is not an absolute time interval
unit, since its duration depends on the clock interrupt frequency of the particular
hardware platform). With the global statement it is possible to use the variables
count_jiffies and count_ms also in the probe t imer .ms (12345). With +
+ the value of a variable is incremented by 1.

Conditional Statements

There are a number of conditional statements that you can use in SystemTap scripts.
The following are probably most common:

If/Else Statements
They are expressed in the following format:
if (condition)®
statement 10

else®
statement2®

The if statement compares an integer-valued expression to zero. If the
condition expression @ is non-zero, the first statement @ is executed. If the
condition expression is zero, the second statement @ is executed. The else clause
(® and @) is optional. Both ® and @ can also be statement blocks.

While Loops
They are expressed in the following format:

SystemTap—Filtering and Analyzing System Data 87

while (condition)®
statement®

As long as condition is non-zero, the statement @ is executed. ® can also
be a statement block. It must change a value so condition will eventually be
Zero.

For Loops
They are basically a shortcut for while loops and are expressed in the
following format:

for (initialization®; conditional®; increment®) statement

The expression specified in @ is used to initialize a counter for the number of
loop iterations and is executed before execution of the loop starts. The execution
of the loop continues until the loop condition @ is false. (This expression is
checked at the beginning of each loop iteration). The expression specified in

® is used to increment the loop counter. It is executed at the end of each loop
iteration.

Conditional Operators
The following operators can be used in conditional statements:

==: Isequal to
!=: Is not equal to
>=: Is greater than or equal to

<=: Isless than or equal to

5.4 Example Script

If you have installed the systemtap-doc package, you can find a number of
useful SystemTap example scripts in /usr/share/doc/packages/
systemtap/examples

This section describes a rather simple example script in more detail: /usr/

share/doc/packages/systemtap/examples/network/tcp
_connections.stp

88 System Analysis and Tuning Guide

Example 5.5 Monitoring Incoming TCP Connections with tcp_connections.stp

#! /usr/bin/env stap

probe begin {
printf ("%$6s %16s %6s %$6s %16s\n",

"ygip", "CcmD", "PID", "PORT", "IP_SOURCE")
}
probe kernel.function("tcp_accept") .return?,
kernel.function ("inet_csk_accept") .return? {
sock = Sreturn
if (sock != 0)
printf ("%$6d %$16s %6d %$6d %$16s\n", uid(), execname (), pid(),

inet_get_local_port (sock), inet_get_ip_source (sock))
}

This SystemTap script monitors the incoming TCP connections and helps to
identify unauthorized or unwanted network access requests in real time. It shows
the following information for each new incoming TCP connection accepted by the
computer:

e UserID (UID)
* Command accepting the connection (CMD)
e Process ID of the command (PID)

* Port used by the connection (PORT)

IP address from which the TCP connection originated (IP_SOUCE)

To run the script, execute

stap /usr/share/doc/packages/systemtap/examples/network/tcp_connections.stp

and follow the output on the screen. To manually stop the script, press Ctrl + C.

5.5 For More Information

This chapter only provides a short SystemTap overview. Refer to the following links
for more information about SystemTap:

http://sourceware.org/systemtap/
SystemTap project home page.

SystemTap—Filtering and Analyzing System Data 89

http://sourceware.org/systemtap/

http://sourceware.org/systemtap/wiki/
Huge collection of useful information about SystemTap, ranging from detailed
user and developer documentation to reviews and comparisons with other tools,
or Frequently Asked Questions and tips. Also contains collections of SystemTap
scripts, examples and usage stories and lists recent talks and papers about
SystemTap.

http://sourceware.org/systemtap/documentation.html
Features a SystemTap Tutorial, a SystemTap Beginner's Guide, a Tapset
Developer's Guide, and a SystemTap Language Reference in PDF and HTML
format. Also lists the relevant man pages.

You can also find the SystemTap language reference and SystemTap tutorial in
your installed system under /usr/share/doc/packages/systemtap
Example SystemTap scripts are available from the example subdirectory.

90 System Analysis and Tuning Guide

http://sourceware.org/systemtap/wiki/
http://sourceware.org/systemtap/documentation.html

Kernel Probes

Kernel probes are a set of tools to collect Linux kernel debugging and performance
information. Developers and system administrators usually use them either to debug
the kernel, or to find system performance bottlenecks. The reported data can then be
used to tune the system for better performance.

You can insert these probes into any kernel routine, and specify a handler to be
invoked after a particular break-point is hit. The main advantage of kernel probes is
that you no longer need to rebuild the kernel and reboot the system after you make
changes in a probe.

To use kernel probes, you typically need to write or obtain a specific
kernel module. Such module includes both the init and the exit function.
The init function (such as register_kprobe ()) registers one or more
probes, while the exit function unregisters them. The registration function
defines where the probe will be inserted and which handler will be called
after the probe is hit. To register or unregister a group of probes at one
time, you can use relevant register_<probe_type>probes () or
unregister_<probe_type>probes () functions.

Debugging and status messages are typically reported with the printk kernel
routine. printk is a kernel-space equivalent of a user-space print f routine.
For more information on printk, see Logging kernel messages [http://www
.win.tue.nl/~aeb/linux/1k/1k—-2.html#ss2.8].
Normally, you can view these messages by inspecting /var/log/messages
or /var/log/syslog .Commenting, file not ready For more information on
log files, see Chapter 4, Analyzing and Managing System Log Files (page 57).

Kernel Probes 91

http://www.win.tue.nl/~aeb/linux/lk/lk-2.html#ss2.8
http://www.win.tue.nl/~aeb/linux/lk/lk-2.html#ss2.8

6.1 Supported Architectures

Kernel probes are fully implemented on the following architectures:

* 1386

x86_64 (AMD-64, EM64T)

* ppc6bd

* arm

* ppc

Kernel probes are partially implemented on the following architectures:
* ia64 (does not support probes on instruction slot1)

* sparc64 (return probes not yet implemented)

6.2 Types of Kernel Probes

There are three types of kernel probes: kprobes, jprobes, and kretprobes. Kretprobes
are sometimes referred to as return probes. You can find vivid source code examples
of all three type of kernel probes in the /usr/src/linux/samples/
kprobes/ directory (package kernel-source).

6.2.1 Kprobe

Kprobe can be attached to any instruction in the Linux kernel. When it is registered,
it inserts a break-point at the first bytes of the probed instruction. When the processor
hits this break-point, the processor registers are saved, and the processing passes

to kprobes. First, a pre-handler is executed, then the probed instruction is stepped,
and, finally a post-handler is executed. The control is then passed to the instruction
following the probe point.

92 System Analysis and Tuning Guide

6.2.2 Jprobe

Jprobe is implemented through the kprobe mechanism. It is inserted on a function's
entry point and allows direct access to the arguments of the function which is being
probed. Its handler routine must have the same argument list and return value as the
probed function. It also has to end by calling the jprobe_return () function.

When jprobe is hit, the processor registers are saved, and the instruction pointer is
directed to the jprobe handler routine. The control then passes to the handler with
the same register contents as the function being probed. Finally, the handler calls
the jprobe_return () function, and switches the control back to the control
function.

In general, you can insert multiple probes on one function. Jprobe is, however,
limited to only one instance per function.

6.2.3 Return Probe

Return probes are also implemented through kprobes. When the
register_kretprobe () function is called, a kprobe is attached to the entry of
the probed function. After hitting the probe, the Kernel probes mechanism saves the
probed function return address and calls a user-defined return handler. The control is
then passed back to the probed function.

Before you call register_kretprobe (), youneed to set amaxactive
argument, which specifies how many instances of the function can be probed at the
same time. If set too low, you will miss a certain number of probes.

6.3 Kernel probes API

Kprobe's programming interface consists of functions, which are used to register and
unregister all used kernel probes, and associated probe handlers. For a more detailed
description of these functions and their arguments, see the information sources in
Section 6.5, “For More Information” (page 95).

register_kprobe ()

Inserts a break-point on a specified address. When the break-point is hit, the
pre_handler and post_handler are called.

Kernel Probes 93

register_Jjprobe ()
Inserts a break-point in the specified address. The address has to be the address
of the first instruction of the probed function. When the break-point is hit, the
specified handler is run. The handler should have the same argument list and
return type as the probed.

register_kretprobe ()
Inserts a return probe for the specified function. When the probed function
returns, a specified handler is run. This function returns O on success, or a
negative error number on failure.

unregister_kprobe (), unregister_jprobe (),
unregister_kretprobe ()
Removes the specified probe. You can use it any time after the probe has been
registered.

register_kprobes (), register_Jjprobes(),
register_kretprobes ()
Inserts each of the probes in the specified array.

unregister_kprobes (), unregister_jprobes (),
unregister_kretprobes ()

Removes each of the probes in the specified array.

disable_kprobe(),disable_jprobe(),disable_kretprobe ()
Disables the specified probe temporarily.

enable_kprobe (), enable_jprobe (), enable_kretprobe ()
Enables temporarily disabled probes.

6.4 Debugfs Interface

With recent Linux kernels, the Kernel probes instrumentation uses the kernel debugfs
interface. It helps you list all registered probes and globally switch all the probes on
or off.

94 System Analysis and Tuning Guide

6.4.1 How to List Registered Kernel
Probes

The list of all currently registered kprobes is in the /sys/kernel/debug/
kprobes/list file.

saturn.example.com:~ # cat /sys/kernel/debug/kprobes/list

c015d71a k vfs_read+0x0 [DISABLED]

c011a316 j do_fork+0x0
c03dedc5 r tcp_vé4_rcv+0x0

The first column lists the address in the kernel where the probe is inserted. The
second column prints the type of the probe: k for kprobe, j for jprobe, and r for
return probe. The third column specifies the symbol, offset and optional module
name of the probe. The following optional columns include the status information
of the probe. If the probe is inserted on a virtual address which is not valid anymore,
it is marked with [GONE]. If the probe is temporarily disabled, it is marked with
[DISABLED].

6.4.2 How to Switch All Kernel Probes On
or Off

The /sys/kernel/debug/kprobes/enabled file represents a switch
with which you can globally and forcibly turn on or off all the registered kernel
probes. To turn them off, simply enter

echo "0" > /sys/kernel/debug/kprobes/enabled

on the command line as root. To turn them on again, enter

echo "1" > /sys/kernel/debug/kprobes/enabled

Note that this way you do not change the status of the probes. If a probe is
temporarily disabled, it will not be enabled automatically but will remain in the
[DISABLED] state after entering the latter command.

6.5 For More Information

To learn more about kernel probes, look at the following sources of information:

Kernel Probes 95

* Thorough but more technically oriented information about kernel probes is in
/usr/src/linux/Documentation/kprobes.txt (package
kenrel-source).

» Examples of all three types of probes (together with related Makefile) are in the
/usr/src/linux/samples/kprobes/ directory (package kenrel-
source).

* In-depth information about Linux kernel modules and printk kernel routine is
in The Linux Kernel Module Programming Guide [http://t1dp.org/
LDP/1lkmpg/2.6/html/lkmpg.html]

* Practical but slightly outdated information about practical use of kernel probes

is in Kernel debugging with Kprobes [http://www.ibm.com/
developerworks/library/l-kprobes.html]

96 System Analysis and Tuning Guide

http://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html
http://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html
http://www.ibm.com/developerworks/library/l-kprobes.html
http://www.ibm.com/developerworks/library/l-kprobes.html

Perfmon2—Hardware-Based
Performance Monitoring

Perfmon?2 is a standardized, generic interface to access the performance monitoring
unit (PMU) of a processor. It is portable across all PMU models and architectures,
supports system-wide and per-thread monitoring, counting and sampling.

7.1 Conceptual Overview

The following subsections give you a brief overview about Perfmon.

7.1.1 Perfmon2 Structure

Performance monitoring is “the action of collecting information related to how an
application or system performs”. The information can be obtained from the code or
the CPU/chipset.

Modern processors contain a performance monitoring unit (PMU). The design
and functionality of a PMU is CPU specific: for example, the number of registers,
counters and features supported will vary by CPU implementation.

The Perfmon interface is designed to be generic, flexible and extensible. It can
monitor at the program (thread) or system levels. In either mode, it is possible to
count or sample your profile information. This uniformity makes it easier to write
portable tools. Figure 7.1, “Architecture of perfmon2” (page 98) gives an
overview.

Perfmon2—Hardware-Based Performance Monitoring 97

Figure 7.1 Architecture of perfimon2

pfmon Userspace
Generic
perfmon
Linux Kernel
Architecture specific
perfmon
PMU CPU Hardware

Each PMU model consists of a set of registers: the performance monitor
configuration (PMC) and the performance monitor data (PMD). Only PMCs is
writeable, but both can be read. These registers store configuration information and
data.

7.1.2 Sampling and Counting

Perfmon?2 supports two modes where you can run your profiling: sampling or
couting.

Sampling is usually expressed by an interval of time (time-based) or an occurance

of a definied number of events (event-based). Perfmon indirectly supports time-
based sampling by using an event-based sample with constant correlation to time (for
example, unhalted_reference_cycles.)

In contrast, Counting is expressed in terms of a number of occurances of an event.

Both methods store their information into a sample. This sample contains
information about, for example, where a thread was or instruction pointers.

The following example demonstrates the counting of the CPU_OP_CYCLES event
and the sampling of this event, generating a sample per 100000 occurances of the
event:

98 System Analysis and Tuning Guide

pfmon --no-cmd-output -e CPU_OP_CYCLES_ALL /bin/ls
1306604 CPU_OP_CYCLES_ALL

The following command gives the count of a specific function and the procentual
amount of the total cycles:

pfmon --no-cmd-output --short-smpl-periods=100000 —e CPU_OP_CYCLES_ALL /

bin/1ls

results for [28119:28119<-[28102]] (/bin/ls)

total samples 12

total buffer overflows : 0

#

event00

counts %self Scum code addr
1 8.33% 8.33% 0x2000000000007180
1 8.33% 16.67% 0x20000000000195a0
1 8.33% 25.00% 0x2000000000019260
1 8.33% 33.33% 0x2000000000014e60
1 8.33% 41.67% 0x20000000001£38c0
1 8.33% 50.00% 0x20000000001ea481
1 8.33% 58.33% 0x200000000020b260
1 8.33% 66.67% 0x2000000000203490
1 8.33% 75.00% 0x2000000000203360
1 8.33% 83.33% 0x2000000000203440
1 8.33% 91.67% 0x4000000000002690
1 8.33% 100.00% 0x20000000001cfdfl

7.2 Installation

In order to use Perfmon2, first check the following preconditions:

SUSE Linux Enterprise 11
Supported architectures are IA64, x86_64. The package perf (Performance
Counters for Linux) is the supported tool for x86 and PPC64

SUSE Linux Enterprise 11 SP1
Supported architecture is IA64 only

The pfmon on SUSE Linux Enterprisel 1 supports the following processors (taken
from /usr/share/doc/packages/pfmon/README):

Table 7.1 Supported Processors

Model Processor

Intel TA-64 Itanium (Merced), Itanium 2
(McKinley, Madison, Deerfield),

Perfmon2—Hardware-Based Performance Monitoring 99

Model Processor

Itanium 2 9000/9100 (Montecito,
Montvale) and Generic

AMD X86 Opteron (K8, fam 10h)

Intel X86 Intel P6 (Pentium II, Pentium Pro,
Pentium III, Pentium M); Yonah (Core
Duo, Core Solo); Netburst (Pentium
4, Xeon); Core (Merom, Penryn,
Dunnington) Core 2 and Quad; Atom;
Nehalem; architectural perfmon v1, v2,
v3

Install the following packages depending on your architecture:

Table 7.2 Needed Packages

Architecture Packages

ia64 pfmon

7.3 Using Perfmon

In order to use Perfmon, use the command line tool pfmon to get all your
information.

NOTE: Mutual Exclusion of Perfmon and OProfile Sessions

On x86 architectures it is not possible to start a Perfmon session and a
OProfile session. Only one can be run at the same time.

7.3.1 Getting Event Information

To get a list of supported events, use the option -1 from pfmon to list them. Keep in

mind, this list depends on the host PMU:
pfmon -1

100 System Analysis and Tuning Guide

ALAT_CAPACITY_MISS_ALL
ALAT_CAPACITY_MISS_FP
ALAT_CAPACITY_MISS_INT
BACK_END_BUBBLE_ALL
BACK_END_BUBBLE_FE
BACK_END_BUBBLE_L1D_FPU_RSE

CPU_CPL_CHANGES_ALL
CPU_CPL_CHANGES_LVLO
CPU_CPL_CHANGES_LVL1
CPU_CPL_CHANGES_LVL2
CPU_CPL_CHANGES_LVL3
CPU_OP_CYCLES_ALL
CPU_OP_CYCLES_QUAL
CPU_OP_CYCLES_HALTED
DATA_DEBUG_REGISTER_FAULT
DATA_DEBUG_REGISTER_MATCHES
DATA_EAR_ALAT

Get an explanation of these entries with the option —1i and the event name:
pfmon -i CPU_OP_CYCLES_ALL

Name : CPU_OP_CYCLES_ALL

Code : 0x12

Counters : [4 56 7 8 9 10 11 12 13 14 15
Desc : CPU Operating Cycles —- All CPU cycles counted
Umask : 0x0

EAR : None

ETB : No

MaxIncr : 1 (Threshold 0)

Qual : None

Type : Causal

Set : None

7.3.2 Enabling System Wide Sessions

Use the ——system-wide option to enable monitoring all processes that execute on
a specific CPU or sets of CPUs. You do not have to be root to do so; per default,
user level is turned on for all events (option —u).

It is possible that one system wide session can run concurrently with another system
wide sessions as long as they do not monitor the same set of CPUs. However, you
can not run a system wide session with any per-thread sessions together.

The following examples are taken from a Itanium IA64 Montecito processor. To
execute a system-wide session, perform the following procedure:

1 Detect your CPU set:

Perfmon2—Hardware-Based Performance Monitoring 101

pfmon -v --system-wide

selected CPUs (2 CPU in set, 2 CPUs online): CPUO CPU1

2 Delimit your session. The following list describes options which are used in the
examples below (refer to the man page for more details):

—e/--events
Profile only selected events. See Section 7.3.1, “Getting Event Information”
(page 100) for how to get a list.

—-—cpu-list
Specifies the list of processors to monitor. Without this options, all available
processors are monitored.

-t/--session-timeout
Specifies the duration of the monitor session expressed in seconds.

Use one of the three methods to start your profile session.

¢ Use the default events:

pfmon --cpu-list=0-2 --system-wide -k -e
CPU_OP_CYCLES_ALL, IA64_INST_RETIRED
<press ENTER to stop session>

CPUO 7670609 CPU_OP_CYCLES_ALL
CPUO 4380453 IA64_INST_RETIRED
CPU1 7061159 CPU_OP_CYCLES_ALL
CpU1 4143020 IA64_INST_RETIRED
CPU2 7194110 CPU_OP_CYCLES_ALL
CPU2 4168239 IA64_INST_RETIRED

» Use a timeout expressed in seconds:

pfmon --cpu-list=0-2 --system-wide --session-timeout=10 -k -e
CPU_OP_CYCLES_ALL, IA64_INST_RETIRED
<session to end in 10 seconds>

CPUO 69263547 CPU_OP_CYCLES_ALL
CPUO 38682141 IA64_INST_RETIRED
CPU1 87189093 CPU_OP_CYCLES_ALL
CpU1 54684852 IA64_INST_RETIRED
CPU2 64441287 CPU_OP_CYCLES_ALL
CPU2 37883915 IA64_INST_RETIRED

» Execute a command. The session is automatically started when the program
starts and automatically stopped when the program is finished:

102 System Analysis and Tuning Guide

pfmon --cpu-list=0-1 --system-wide -u -e

CPU_OP_CYCLES_ALL, IA64_INST_RETIRED —-- 1ls -1 /dev/null
crw-rw-rw— 1 root root 1, 3 27. Mir 03:30 /dev/null
CPUO 38925 CPU_OP_CYCLES_ALL
CPUO 7510 IA64_INST_RETIRED
CPU1 9825 CPU_OP_CYCLES_ALL
CrPU1 1676 IA64_INST_RETIRED

3 Press the Enter key to stop a session:

4 If you want to aggregate counts, use the —aggr option after the previous
command:

pfmon --cpu-list=0-1 --system-wide -u -e
CPU_OP_CYCLES_ALL, IA64_INST_RETIRED --aggr
<press ENTER to stop session>

52655 CPU_OP_CYCLES_ALL
53164 IA64_INST_RETIRED

7.3.3 Monitoring Running Tasks

Perfmon can also monitor an existing thread. This is useful for monitoring system
daemons or programs which take a long time to start. First determine the process ID
you wish to monitor:

ps ax | grep foo
10027 pts/1 R 2:23 foo

Use the found PID for the ——attach-task option of pfmon:

pfmon --attach-task=10027
3682190 CPU_OP_CYCLES_ALL

7.4 Retrieving Metrics From
DebugFS

Perfmon can collect statistics which are exported through the debug interface. The
metrics consists of mostly aggregated counts and durations.

Access the data through mounting the debug file system as root under /sys/
kernel/debug

Perfmon2—Hardware-Based Performance Monitoring 103

The data is located under /sys/kernel/debug/perfmon/ and organized
per CPU. Each CPU contains a set of metrics, accessible as ASCII file. The
following data is taken from the /usr/src/linux/Documentation/

perfmon2-debugfs.txt

Table 7.3 Read-Only Files in /sys/kernel/debug/perfmon/cpu®/

File

Description

ctxswin_count

ctxswin_ns

ctxswout_count

ctxswout_ns

fmt_handler_calls

fmt_handler_ns

handle_timeout_count

104 System Analysis and Tuning Guide

Number of PMU context switch in

Number of nanoseconds spent in the
PMU context switch in routine
Average cost of the PMU context

switch in =
ctxswin_ns / ctxswin_count

Number of PMU context switch out

Number of nanoseconds spend in the
PMU context switch out routine
Average cost of the PMU context

switch out =
ctxswout_ns / ctxswout_count

Number of calls to the sampling format
routine that handles PMU interrupts
(typically the routine that recors a
sample)

Number of nanoseconds spent in the
routine that handle PMU interrupt in the
sampling format

Average time spent in this routine

fmt_handler_ns /
fmt_handler_calls

Number of times the
pfm_handle_timeout () routine

File

Description

handle_work_count

ovl_intr_all_count

ovfl_intr_nmi_count

ovfl_intr_ns

ovfl_intr_regular_count

ovfl_intr_replay_count

perfom_intr_spurious
_count ,ovfl_intr
_spurious_count

pfm_restart_count

is called (used for timeout-based set
switching)

Number of times
pfm_handle_work () routine is
called

Number of PMU interrupts received by
the kernel

Number of non maskeable interrupts
(NMI) received by the kernel from
perfmon (only for X86 hardware)

Number of nanoseconds spent in the

perfmon2 PMU interrupt handler

routine.

Average time to handle one PMU
interrupt =

ovfl intr_ns /
ovfl_intr_all_count

Number of PMU interrupts which are
actually processed by the perfmon
interrupt handler

Number of PMU interrupts which were
replayed on the context switch in or on
event set switching

Number of PMU interrupts which were
dropped because there was no active
context

Number of times pfm_restart () is
called

Perfmon2—Hardware-Based Performance Monitoring 105

File Description

reset_pmds_count Number of times
pfm_reset_pmds () is called

set_switch_count Number of event set switches

set_switch_ns Number of nanoseconds spent in the set
switching rountine

Average cost of switching sets =
set_switch_ns / set_switch_count

This might be useful to compare your metrics before and after the perfmon run. For
example, collect your data first:

for 1 in /sys/kernel/debug/perfmon/cpul/*; do
echo "$i:"; cat $i
done >> pfmon-before.txt
Run your performance monitoring, maybe restrict it to a specific CPU:

pfmon —--cpu-list=0 ...

Collect your data again:

for 1 in /sys/kernel/debug//perfmon/cpul/*; do
echo "$i:"; cat $i
done >> pfmon-after.txt

Compare these two files:

diff -u pfmon-before.txt pfmon-after.txt

7.5 For More Information

This chapter only provides a short overview. Refer to the following links for more
information:

http://perfmon2.sourceforge.net/
The project home page.

http://www.iop.org/EJ/article/1742-6596/119/4/
042017/jpconf8_119_042017.pdf
A good overview as PDF.

106 System Analysis and Tuning Guide

http://perfmon2.sourceforge.net/
http://www.iop.org/EJ/article/1742-6596/119/4/042017/jpconf8_119_042017.pdf
http://www.iop.org/EJ/article/1742-6596/119/4/042017/jpconf8_119_042017.pdf

Chapter 8, OProfile—System-Wide Profiler (page 109)
Consult this chapter for other performance optimizations.

Perfmon2—Hardware-Based Performance Monitoring 107

OProfile—System-Wide
Profiler

OProfile is a profiler for dynamic program analysis. It investigates the behavior of a
running program and gathers information. This information can be viewed and gives
hints for further optimizations.

It is not necessary to recompile or use wrapper libraries in order to use OProfile.
Not even a kernel patch is needed. Usually, when you profile an application, a small
overhead is expected, depending on work load and sampling frequency.

8.1 Conceptual Overview

OProfile consists of a kernel driver and a daemon for collecting data. It makes use of
the hardware performance counters provided on Intel, AMD, and other processors.
OProfile is capable of profiling all code including the kernel, kernel modules, kernel
interrupt handlers, system shared libraries, and other applications.

Modern processors support profiling through the hardware by performance counters.
Depending on the processor, there can be many counters and each of these can be
programmed with an event to count. Each counter has a value which determines how
often a sample is taken. The lower the value, the more often it is used.

During the post-processing step, all information is collected and instruction addresses
are mapped to a function name.

OProfile—System-Wide Profiler 109

8.2 Installation and Requirements

In order to make use of OProfile, install the oprofile package. OProfile works on
[1A-64, AMD64, s390, and PPC64.

It is useful to install the respective debuginfo package for the respective
application you want to profile. If you want to profile the Kernel, you need the
debuginfo package as well.

8.3 Available OProfile Utilities

OProfile contains several utilities to handle the profiling process and its profiled data.
The following list is a short summary of processes used in this chapter:

opannotate
Outputs annotated source or assembly listings mixed with profile information.

opcontrol
Controls the profiling sessions (start or stop), dumps profile data, and sets up
parameters.

ophelp
Lists available events with short descriptions.

opimport
Converts sample database files from a foreign binary format to the native format.

opreport
Generates reports from profiled data.

8.4 Using OProfile

It is possible with OProfile to profile both kernel and applications. When profiling
the kernel, tell OProfile where to find the vml inuz* file. Use the ——vmlinux
option and point it to vmlinuz* (usually in /boot). If you need to profile kernel
modules, OProfile does this by default. However, make sure you read http://
oprofile.sourceforge.net/doc/kernel-profiling

.html .

110 System Analysis and Tuning Guide

http://oprofile.sourceforge.net/doc/kernel-profiling.html
http://oprofile.sourceforge.net/doc/kernel-profiling.html
http://oprofile.sourceforge.net/doc/kernel-profiling.html

Applications usually do not need to profile the kernel, so better use the ——no—
vmlinux option to reduce the amount of information.

8.4.1 General Steps

In its simplest form, start the daemon, collect data, stop the daemon, and create your
report. This method is described in detail in the following procedure:

1 Open a shell and log in as root.

2 Decide if you want to profile with or without the Linux kernel:

2a Profile With the Linux Kernel Execute the following commands,
because the opcontrol command needs an uncompressed image:

cp /boot/vmlinux-" uname -r’ .gz /tmp
gunzip /tmp/vmlinux*.gz
opcontrol --vmlinux=/tmp/vmlinux*

2b Profile Without the Linux Kernel Use the following command:

opcontrol —--no-vmlinux

If you want to see which functions call other functions in the output, use
additionally the ——callgraph option:

opcontrol --no-vmlinux --callgraph

3 Start the OProfile daemon:

opcontrol --start

Using 2.6+ OProfile kernel interface.

Using log file /var/lib/oprofile/samples/oprofiled.log
Daemon started.

Profiler running.

4 Start your application you want to profile right after the previous step.

5 Stop the OProfile daemon:

opcontrol —--stop

6 Dump the collected datato /var/lib/oprofile/samples

opcontrol —--dump

7 Create a report:

OProfile—System-Wide Profiler 111

opreport
Overflow stats not available
CPU: CPU with timer interrupt, speed 0 MHz (estimated)
Profiling through timer interrupt
TIMER: 0|

o

samples | 3

84877 98.3226 no-vmlinux

8 Shutdown the OProfile daemon:

opcontrol —--shutdown

8.4.2 Getting Event Configurations

The general procedure for event configuration is as follows:

1 Use first the events CPU-CLK_UNHALTED and INST_RETIRED to find
optimization opportunities.

2 Use specific events to find bottlenecks. To list them, use the command
opcontrol —-list-events.

If you need to profile certain events, first check the available events supported by
your processor with the ophelp command (example output generated from Intel
Core i5 CPU):

ophelp
oprofile: available events for CPU type "Intel Architectural Perfmon"

See Intel 64 and IA-32 Architectures Software Developer's Manual
Volume 3B (Document 253669) Chapter 18 for architectural perfmon events
This is a limited set of fallback events because oprofile doesn't know your
CPU
CPU_CLK_UNHALTED: (counter: all)
Clock cycles when not halted (min count: 6000)
INST_RETIRED: (counter: all)
numpber of instructions retired (min count: 6000)
LLC_MISSES: (counter: all)
Last level cache demand requests from this core that missed the LLC
(min count: 6000)
Unit masks (default 0x41)
0x41: No unit mask
LLC_REFS: (counter: all))
Last level cache demand requests from this core (min count: 6000)

112 System Analysis and Tuning Guide

Unit masks (default 0Ox4f)

Ox4f: No unit mask

BR_MISS_PRED_RETIRED: (counter: all))
number of mispredicted branches retired

(precise) (min count: 500)

You can get the same output from opcontrol ——-list—events.

Specify the performance counter events with the option ——event. Multiple options
are possible. This option needs an event name (from ophelp) and a sample rate, for

example:

opcontrol --event=CPU_CLK_UNHALTED:100000

WARNING: Be Careful with Low Sampling Rates with

CPU_CLK_UNHALTED

Setting sampling rates is dangerous as small rates cause the system to

overload and freeze.

8.5 Using OProfile's GUI

The GUI for OProfile can be started as root with oprof_start, see Figure 8.1,
“GUI for OProfile” (page 113). Select your events and change the counter, if
necessary. Every highlighted line is added to the list of checked events. Use the
Configuration tab to set the buffer and CPU size, the verbose option and others.

Click on Start to execute OProfile.
Figure 8.1 GUI for OProfile

Setup | Configuration

~Event:

] CPU_CLK_UNHALTED x| Profile kernel
INST_RETIRED
AULLC MISSES
LLCREFS Count (598500
BR_MISS_PRED_RETIRED

x| Prafile user binaries

Unit mask

[Clock cycles when not halted

[Profiler is not running

Start Reset sample files Save and guit

4

OProfile—System-Wide Profiler 113

8.6 Generating Reports

Before generating a report, make sure OProfile has dumped your data to the /var/
lib/oprofile/samples directory using the command opcontrol ——
dump. A report can be generated with the commands opreport or opannotate.

Calling oreport without any options gives a complete summary. With an
executable as an argument, retrieve profile data only from this executable. If you
analyze applications written in C++, use the ——demangle smart option.

The opannotate generates output with annotations from source code. Run it with
the following options:
opannotate —-source \

—-base-dirs=BASEDIR \

—--search-dirs= \

——output-dir=annotated/ \
/lib/libfoo.so

The option ——base—-dir contains a comma separated list of paths which is stripped
from debug source files. This paths were searched prior than looking in ——search-
dirs. The ——search-dirs option is also a comma separated list of directories to
search for source files.

NOTE: Inaccuracies in Annotated Source

Due to compiler optimization, code can disappear and appear in a different
place. Use the information in http://oprofile.sourceforge
.net/doc/debug-info.html to fully understand its implications.

8.7 For More Information

This chapter only provides a short overview. Refer to the following links for more
information:

http://oprofile.sourceforge.net
The project home page.

Manpages
Details descriptions about the options of the different tools.

114 System Analysis and Tuning Guide

http://oprofile.sourceforge.net/doc/debug-info.html
http://oprofile.sourceforge.net/doc/debug-info.html
http://oprofile.sourceforge.net

/usr/share/doc/packages/oprofile/oprofile.html
Contains the OProfile manual.

http://developer.intel.com/
Architecture reference for Intel processors.

http://www.amd.com/us—-en/assets/content_type/
white_papers_and_tech_docs/22007.pdf
Architecture reference for AMD Athlon/Opteron/Phenom/Turion.

http://www-01.ibm.com/chips/techlib/techlib.nsf/
productfamilies/PowerPC/
Architecture reference for PowerPC64 processors in IBM iSeries, pSeries, and

blade server systems.

OProfile—System-Wide Profiler 115

http://developer.intel.com/
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/22007.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/22007.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/productfamilies/PowerPC/
http://www-01.ibm.com/chips/techlib/techlib.nsf/productfamilies/PowerPC/

Part IV. Resource
Management

General System Resource
Management

Tuning the system is not only about optimizing the kernel or getting the most out of
your application, it begins with setting up a lean and fast system. The way you set
up your partitions and file systems can influence the servers speed. The number of
active services and the way routine tasks are scheduled also affects performance.

9.1 Planning the Installation

A carefully planned installation ensures that the system is basically set up exactly as
you need it for the given purpose. It also saves considerable time when fine tuning
the system. All changes suggested in this section can be made in the Installation
Settings step during the installation. See Paznen “Installation Settings” (I'naBa 1,
Installation with YaST, TReference) for details.

9.1.1 Partitioning

Depending on the server's range of application and the hardware layout the
partitioning scheme can influence the machine's performance (although to a lesser
extend only). It is beyond the scope of this manual to suggest different partion
schemes for particular workloads, however, the following rules will positively affect
performance. Of course they do not apply when using an external storage system.

* Make sure there always is some free space available on the disk, since a full disk
has got inferior performance

General System Resource Management 119

* Disperse simultaneous read and write access onto different disks by, for example:
* using separate disks for the operating system, the data, and the log files
¢ placing a mail server's spool directory on a separate disk

« distributing the user directories of a home server between different disks

9.1.2 Installation Scope

Actually, the installation scope has no direct influence on the machine's performance,
but a carefully chosen scope of packages nevertheless has got advantages. It is
recommended to install the minimum of packages needed to run the server. A

system with a minimum set of packages is easier to mainatain and has got less
potential security issues. Furthermore, a tailor made installation scope also ensures
no unnecessary services are started by default.

openSUSE lets you customize the installation scope on the Installation Summary
screen. By default, you can select or remove preconfigured patterns for specific
tasks, but it is also possible to start the YaST Software Manager for a fine-grained
package based selection.

One or more of the following patterns selected for installation by default may not be
needed in all cases:

GNOME Desktop Environment
A server seldomly needs a full-blown desktop environment. In case a graphical
environment is needed, a more economical solution such as as icewm or fvwm
may also be sufficient.

X Window System
When solely administrating the server and its applications via command line,
consider to not install this pattern. However, keep in mind that it is needed to run
GUI applications from a remote machine. If your application is managed by a
GUI or if you prefer the GUI version of YaST, keep this pattern.

Print Server
This pattern is only needed when you want to print from the machine.

120 System Analysis and Tuning Guide

9.1.3 Default Runlevel

A running X Window system eats up many ressources and is seldomly needed on a
server. It is strongly recommended to start the system in runlevel 3 (Full multi-user
with network, no X). You will still be able to start graphical applications from remote
or use the startx command to start a local graphical desktop.

9.2 Disabling Unnecessary Services

The default installation starts a number of services (the number varies with the
installation scope). Since each service consumes ressources, it is recommended to
disable the ones not needed. Start YaST > System > Cucmemnvie caydxncovt (Yposenn
3anycka) > Expert Mode to start the services management module. When using the
graphical version of YaST you can click on the column headlines to sort the service
list. Use this to get an overview of which services are currently running or which
services are started in the server's default runlevel. Mark a service with the mouse to
see its description. Use the Start/Stop/Refresh dropdown to disable the service for the
running session. To permanently disable it, use the Set/Reset drop-down.

The following list shows services started after a default installation of openSUSE that
may not be needed:

alsasound
Loads the Advanced Linux Sound System. Disable if you do not need sound.

auditd
A daemon for the audit system. Disable if you do not use Audit.

bluez-coldplug
Handles coldplugging of bluetooth dongles. Disable if you do not have
bluetooth.

cups
A printer daemon. Disable if you do not have acces to a printer.

Jjava.binfmt_misc

Enables the execution of *.class or * jar Java programs. Disable if you do not run
Java applications.

General System Resource Management 121

nfs

Services needed to mount NFS file systems. Disable if not needed.

smbfs
Services needed to mount SMB/CIFS file systems from a Windows server.
Disable if not needed.

splash / splash_early
Shows the splash screen on start-up. Usually not needed on a server

9.3 File Systems and Disk Access

Hard disks are the slowest components in a computer system and therefore often
the cause for a bottleneck. Using the file system that best suits your workload helps
to improve performance. Using special mount options or prioritizing a process' I/O
priority are further means to speed up the system.

9.3.1 File Systems

openSUSE ships with a number of different file systems, including Ext3, Ext2,
ReiserFS, and XFS. Each file system has its own advantages and disadvantages.

NFS

NFS (Version 3) tuning is covered in detail in the NFS Howto at http://nfs
.sourceforge.net/nfs-howto/ . The first thing you should experiment
with when mounting NFS shares is increasing the read write blocksize to 32768 by
using the mount options wsize and rsize.

9.3.2 Disabling Access Time (atime)
Updates

Whenever a file is read on a Linux file system, its access time (atime) is updated.
As a result, each read-only file access in fact causes a write. On a journaling file
system it is even two write operations since the journal will be updated, too. It is

122 System Analysis and Tuning Guide

http://nfs.sourceforge.net/nfs-howto/
http://nfs.sourceforge.net/nfs-howto/

recommended to turn this feature off when you do not need to keep track of access
times. This is possibly true for file and Web servers as well as for a netwok storage.

To turn off access time updates, mount the file system with the noat ime option.
To do so, either edit /etc/fstab directly, or use the Fstab Options dialog when
editing or adding a partition with the YaST Partitioner.

9.3.3 Prioritizing Disk Access with ionice

The ionice command lets you prioritize disk access for single processes. This
enables you to give less I/O priority to non time-critical background processes with
heavy disk access such as backup jobs. On the other hand ionice lets you raise I/O
priority for a specific process to make sure this process has always immediate access
to the disk. You may set the following three scheduling classes:

Idle
A process from the idle scheduling class is only granted disk access, when no
other process has asked for disk I/O.

Best effort
By default, every process will be granted I/O priority from this class. Priority
within this class can be adjusted to a level from 0 to 7 (with O being the highest
priority). By default, a process will be granted a priority corresponding to their
CPU nice level.

Real-time
Processes in this class are always granted disk access first. Fine-tune the priority
level from O to 7 (with 0 being the highest priority). Use with care, since it can
starve other processes.

For more details and the exact command syntax refer to the ionice (1) man page
for ionice.

General System Resource Management 123

Kernel Control Groups

Kernel Control Groups (abbreviated known as “cgroups”) are a kernel feature

that allows aggregating or partitioning tasks (processes) and all their children into
hierarchical organized groups. These hierarchical groups can be configured to show
a specialized behavior that helps with tuning the system to make best use of available
hardware and network resources.

10.1 Technical Overview and
Definitions

The following terms are used in this chapter:
* “cgroup” is another name for Control Groups.

* In a cgroup there is a set of tasks (processes) associated with a set of subsystems
that act as parameters constituting an environment for the tasks.

* Subsystems provide the parameters that can be assigned and define CPU sets,
freezer, or—more general—“resource controllers” for memory, disk I/O, etc.

* cgroups are organized in a tree-structured hierarchy. There can be more than one
hierarchy in the system. You use a different or alternate hierarchy to cope with
specific situations.

* Every task running in the system is in exactly one of the cgroups in the hierarchy.

Kernel Control Groups 125

10.2 Scenario

See the following resource planning scenario for a better understanding (source: /
usr/src/linux/Documentation/cgroups/cgroups.txt):

Figure 10.1 Resource Planning

CPUs

Top CPU Set (20%)

/\

CPU Set 1 CPU Set 2

(60%) (20%)

Professors Students

Memory Disk /0
Professors (50%) Professors (50%)
Students (30%) Students (30%)
System (20%) System (20%)
Network I/O

WWW Browsing (20%)

/\

Professors Students
(15%) (5%)

Network File Systems (60%)

Others (20%)

Web browser such as Firefox will be part of the Web network class, while the NFS
daemons such as (k)nfsd will be part of the NFS network class. On the other side,

126 System Analysis and Tuning Guide

Firefox will share appropriate CPU and memory classes depending on whether a
professor or student started it.

10.3 Control Group Subsystems

The following subsystems are available and can be classified as two types:

Isolation and Special Controllers
cpuset, namespace, freezer, device, checkpoint/restart

Resource Controllers
cpu(scheduler), memory, disk I/O, network

Either mount each subsystem separately:

mount -t cgroup -o cpu none /cpu
mount -t cgroup -0 cpuset none /cpuset

or all subsystems in one go:

mount -t cgroup none /cgroups

Some additional information on available subsystems:

Cpuset (Isolation)
Use cpuset to tie processes to system subsets of CPUs and memory (“memory
nodes”). For an example, see Section 10.4.3, “Example: Cpusets” (page 130).

Namespace (Isolation)
Namespace is for showing private view of system to processes in cgroup. It is
mainly used for OS-level virtualization. This subsystem itself has no special
functions and just tracks changes in namespace.

Freezer (Control)
The Freezer subsystem is useful for high-performance computing clusters (HPC
clusters). Use it to freeze (stop) all tasks in a group or to stop tasks, if they reach
a defined checkpoint. For more information, see /usr/src/linux/
Documentation/cgroups/freezer-subsystem. txt

Here are basic commands, how you can use the freezer subsystem:

mount -t cgroup freezer /freezer -o freezer

Kernel Control Groups 127

Create a child cgroup:

mkdir /freezer/0

Put a task into this cgroup:

echo S$task_pid > /freezer/0/tasks

Freeze it:

echo FROZEN > /freezer/0/freezer.state
Unfreeze (thaw) it:

echo THAWED > /freezer/0O/freezer.state

Device (Isoloation)
A system administrator can provide a list of devices that can be accessed by
processes under cgroups.

It limits access to a device or a file system on a device to only tasks that belong
to the specified cgroup. For more information, see /usr/src/linux/
Documentation/cgroups/devices.txt

Checkpoint/Restart (Control)
Save the state of all processes in a cgroup to a dump file. Restart it later (or just
save the state and continue).

Allows to move “saved container” between physical machines (as VM can do).
Dump all process's image to a file.

Cpuacct (Control)
The CPU accounting controller groups tasks using cgroups and accounts the
CPU usage of these groups. For more information, see /usr/src/linux/
Documentation/cgroups/cpuacct.txt

CPU (Resource Control)
Share CPU bandwidth between groups with the group scheduling function of
CFS (the scheduler). Mechanically complicated.

Memory (Resource Control)

¢ Limits memory usage of user space processes.

Limit LRU (Least Recently Used) pages.
* Anonymous and file cache.
* No limits for kernel memory.

e Maybe in another subsystem if needed.

128 System Analysis and Tuning Guide

For more information, see /usr/src/linux/Documentation/
cgroups/memory.txt

Disk I/O (Resource Control) (Draft)
Three proposals are currently being discussed: dm-ioband, io-throttle, and io-
controller.

Network I/O (Resource Control) (Draft)
Still under discussion.

10.4 Using Controller Groups

10.4.1 Prerequisites

To use cgroups, install the following additional packages:

* libcgroupl contains basic user space tools to simplify resource management.
* cpuset

* libcpusetl

* kernel-source (for documentation purposes only)

e lcx

10.4.2 Checking the Environment

The kernel shipped with openSUSE supports cgroups. There is no need to apply
additional patches. Execute 1xc—checkconfig to see a cgroups environment
similar to the following output:

——— Namespaces ——-—

Namespaces: enabled

Utsname namespace: enabled

Ipc namespace: enabled

Pid namespace: enabled

User namespace: enabled

Network namespace: enabled

Multiple /dev/pts instances: enabled

Kernel Control Groups 129

—-—— Control groups —-—-—

Cgroup: enabled

Cgroup namespace: enabled

Cgroup device: enabled

Cgroup sched: enabled

Cgroup cpu account: enabled
Cgroup memory controller: enabled
Cgroup cpuset: enabled

--— Misc ---—

Veth pair device: enabled
Macvlan: enabled

Vlan: enabled

File capabilities: enabled

To find out which subsystems are available, proceed as follows:

mkdir /cgroups
mount -t cgroup none /cgroups
grep cgroup /proc/mounts

The following subsystems are available: rw, freezer, devices, cpuacct, cpu, ns,
cpuset, memory. Disk and network subsystem controllers may become available
during SUSE Linux Enterprise Server 11 lifetime.

10.4.3 Example: Cpusets

With the command line proceed as follows:

1 To determine the number of CPUs and memory nodes see /proc/cpuinfo
and /proc/zoneinfo

2 Create the cpuset hierarchy as a virtual file system (source: /ust/src/linux/
Documentation/cgroups/cgroups.txt):

mkdir /dev/cpuset

mount -t cpuset cpuset /dev/cpuset

cd /dev/cpuset

mkdir Charlie

cd Charlie

List of CPUs in this cpuset:

/bin/echo 2-3 > cpus

List of memory nodes in this cpuset:
/bin/echo 1 > mems

/bin/echo $$ > tasks

The current shell is now running in the Charlie cpuset
The next line should display '/Charlie'

130 System Analysis and Tuning Guide

cat /proc/self/cpuset

3 Remove the cpuset using shell commands:

rmdir /dev/cpuset/Charlie

This fails as long as this cpuset is in use. First, you have to remove the inside
cpusets or tasks (processes) that belong to it. Check this with:

cat /dev/cpuset/Charlie/tasks

For background information and additional configuration flags, see /usr/src/
linux/Documentation/cgroups/cpusets.txt

With the cset tool, proceed as follows:

Determine the number of CPUs and memory nodes

cset set —-list

Creating the cpuset hierarchy

cset set —--cpu=2-3 --mem=1 --set=Charlie

Starting processes in a cpuset

cset proc --set Charlie --exec —-- stress -c 1 &

Moving existing processes to a cpuset
cset proc —--move --pid PID —--toset=Charlie
List task in a cpuset

cset proc --list --set Charlie
Removing a cpuset
cset set —--destroy Charlie

10.4.4 Example: cgroups

Using shell commands, proceed as follows:

1 Create the cgroups hierarchy:

mkdir /dev/cgroup

mount -t cgroup cgroup /dev/cgroup
cd /dev/cgroup

mkdir priority

cd priority

cat cpu.shares

2 Understanding cpu.shares:

e 1024 is the default (for more information, see sched-design-CFS
.txt) =50% utilization

Kernel Control Groups 131

¢ 1524 = 60% utilization
e 2048 = 67% utilization
¢ 512 =40% utilization

3 Changing cpu.shares
/bin/echo 1024 > cpu.shares

10.5 For More Information

» Kernel documentation (package kernel-source): filesin /usr/src/
linux/Documentation/cgroups

e /usr/src/linux/Documentation/cgroups/cgroups
.txt

e /usr/src/linux/Documentation/cgroups/cpuacct
.txt

e /usr/src/linux/Documentation/cgroups/cpusets
.txt

e /usr/src/linux/Documentation/cgroups/devices
Ext

e /usr/src/linux/Documentation/cgroups/freezer—
subsystem.txt

e /usr/src/linux/Documentation/cgroups/memcg
_test.txt

e /usr/src/linux/Documentation/cgroups/memory
.Ext

e /usr/src/linux/Documentation/cgroups/resource
_counter.txt

* http://lwn.net/Articles/243795/ —Corbet, Jonathan:
Controlling memory use in containers (2007).

132 System Analysis and Tuning Guide

http://lwn.net/Articles/243795/

e http://lwn.net/Articles/236038/ —Corbet, Jonathan: Process
containers (2007).

Kernel Control Groups 133

http://lwn.net/Articles/236038/

Power Management

Power management aims at reducing operating costs for energy and cooling

systems while at the same time keeping the performance of a system at a level that
matches the current requirements. Thus, power management is always a matter of
balancing the actual performance needs and power saving options for a system.
Power management can be implemented and used at different levels of the system.
A set of specifications for power management functions of devices and the operating
system interface to them has been defined in the Advanced Configuration and
Power Interface (ACPI). As power savings in server environments can primarily be
achieved on processor level, this chapter introduces some of the main concepts and
highlights some tools for analyzing and influencing relevant parameters.

11.1 Power Management at CPU
Level

At CPU level, you can control power usage in various ways: for example, by using
idling power states (C-states), changing CPU frequency (P-states), and throttling the
CPU (T-states). The following sections give a short introduction to each approach
and its significance for power savings. Detailed specifications can be found at
http://www.acpi.info/spec.htm

Power Management 135

http://www.acpi.info/spec.htm

11.1.1 C-States (Processor Operating
States)

Modern processors have several power saving modes called C-states. They
reflect the capability of an idle processor to turn off unused components in order to
save power. Whereas C-states have been available for laptops for some time, they
are a rather recent trend in the server market (for example, with Intel* processors, C-
modes are only available since Nehalem).

When a processor runs in the CO state, it is executing instructions. A processor
running in any other C-state is idle. The higher the C number, the deeper the CPU
sleep mode: more components are shut down to save power. Deeper sleep states save
more power, but the downside is that they have higher latency (the time the CPU
needs to go back to CO).

Some states also have submodes with different power saving latency levels. Which
C-states and submodes are supported depends on the respective processor. However,
C1 is always available.

Table 11.1, “C-States” (page 136) gives an overview of the most common C-
states.

Table 11.1 C-States

Mode Definition
Co Operational state. CPU fully turned on.
Cl First idle state. Stops CPU main internal

clocks via software. Bus interface unit
and APIC are kept running at full speed.

C2 Stops CPU main internal clocks via
hardware. State where the processor
maintains all software-visible states,
but may take longer to wake up through
interrupts.

C3 Stops all CPU internal clocks. The
processor does not need to keep its

136 System Analysis and Tuning Guide

Mode Definition

cache coherent, but maintains other
states. Some processors have variations
of the C3 state that differ in how long
it takes to wake the processor through
interrupts.

11.1.2 P-States (Processor Performance
States)

While a processor operates (in CO state), it can be in one of several CPU performance
states (P—states). Whereas C-states are idle states (all but C0), P-states are
operational states that relate to CPU frequency and voltage.

The higher the P-state, the lower the frequency and voltage at which the processor
runs. The number of P-states is processor-specific and the implementation differs
across the various types. However, PO is always the highest-performance state.
Higher P-state numbers represent slower processor speeds and lower power
consumption. For example, a processor in P3 state runs more slowly and uses less
power than a processor running at P1 state. To operate at any P-state, the processor
must be in the CO state where the processor is working and not idling. The CPU P-
states are also defined in the Advanced Configuration and Power Interface (ACPI)
specification, see http://www.acpi.info/spec.htm

C-states and P-states can vary independently of one another.

11.1.3 T-States (Processor Throttling
States)

T-states refer to throttling the processor clock to lower frequencies in order to reduce
thermal effects. This means that the CPU is forced to be idle a fixed percentage of
its cycles per second. Throttling states range from T1 (the CPU has no forced idle
cycles) to Tn, with the percentage of idle cycles increasing the greater n is.

This differs from changing the frequency (which makes the CPU have fewer cycles
per second), and from running in a C-state other than C1. Note that throttling does

Power Management 137

http://www.acpi.info/spec.htm

not reduce voltage and since the CPU is forced to idle part of the time, processes will
take longer to finish and will consume more power instead of saving any power.

T-states are a concept from the times when dynamic frequency scaling and C-
states did not exist. With the implementation of the latter, T-states are only useful
if reducing thermal effects is the primary goal. Since T-states can interfere with C-
states (preventing the CPU from reaching higher C-states), they can even increase
power consumption in a modern CPU capable of C-states.

11.2 The Linux Kernel CPUfreq
Infrastructure

Processor performance states (P-states) and processor operating states (C-states)
are the capability of a processor to switch between different supported operating
frequencies and voltages to modulate power consumption.

In order to dynamically scale processor frequencies at runtime, you can use the
CPUfreq infrastructure to set a static or dynamic power policy for the system. Its
main components are the CPUfreq subsystem (providing a common interface to the
various low-level technologies and high-level policies) , the in-kernel governors
(policy governors that can change the CPU frequency based on different criteria) and
CPU-specific drivers that implement the technology for the specific processor. Apart
from that, user-space daemons may be available.

The dynamic scaling of the clock speed helps to consume less power and generate
less heat when not operating at full capacity.

11.2.1 In-Kernel Governors

You can think of the in-kernel governors as a sort of pre-configured power schemes
for the CPU. The CPUfreq governors use P-states to change frequencies and

lower power consumption. The dynamic governors can switch between CPU
frequencies, based on CPU utilization to allow for power savings while not
sacrificing performance. These governors also allow for some tuning so you can
customize and change the frequency scaling.

The following governors are available with the CPUfreq subsystem:

138 System Analysis and Tuning Guide

Performance Governor
The CPU frequency is statically set to the highest possible for maximum
performance. Consequently, saving power is not the focus of this governor.

Tuning options: The range of maximum frequencies available to the governor
can be adjusted. For details, see Section 11.3.2, “Modifying Current Settings
with cpufreg-set” (page 141).

Powersave Governor
The CPU frequency is statically set to the lowest possible. This can have severe
impact on the performance, as the system will never rise above this frequency no
matter how busy the processors are.

However, using this governor often does not lead to the expected power savings
as the highest savings can usually be achieved at idle through entering C-states.
Due to running processes at the lowest frequency with the powersave governor,
processes will take longer to finish, thus prolonging the time for the system to
enter any idle C-states.

Tuning options: The range of minimum frequencies available to the governor
can be adjusted. For details, see Section 11.3.2, “Modifying Current Settings
with cpufreg-set” (page 141).

On-demand Governor
The kernel implementation of a dynamic CPU frequency policy: The governor
monitors the processor utilization. As soon as it exceeds a certain threshold, the
governor will set the frequency to the highest available. If the utilization is less
than the threshold, the next lowest frequency is used. If the system continues
to be underutilized, the frequency is again reduced until the lowest available
frequency is set.

Tuning options: The range of available frequencies, the rate at which the
governor checks utilization, and the utilization threshold can be adjusted.

Conservative Governor
Similar to the on-demand implementation, this governor also dynamically
adjusts frequencies based on processor utilization, except that it allows for
a more gradual increase in power. If processor utilization exceeds a certain
threshold, the governor does not immediately switch to the highest available
frequency (as the on-demand governor does), but only to next higher frequency
available.

Power Management 139

Tuning options: The range of available frequencies, the rate at which the
governor checks utilization, the utilization thresholds, and the frequency step rate
can be adjusted.

11.2.2 Related Files and Directories

If the CPUfreq subsystem in enabled on your system (which it is by default with
SUSE Linux Enterprise Server), you can find the relevant files and directories under
/sys/devices/system/cpu/ . If you list the contents of this directory,

you will find a cpu{0..x} subdirectory for each processor, and several

other files and directories. You will find a cpuf req subdirectory in each processor
directory, holding a number of files and directories that define the parameters for
CPUfreq. Some of them are writable (for root), some of them are read-only. If

your system currently uses the on-demand or conservative governor, you will see a
separate subdirectory for those governors in cpufreq, containing the parameters for
the governors.

NOTE: Different Processor Settings

The settings under the cpufreq directory can be different for each
processor. If you want to use the same policies across all processors, you
need to adjust the parameters for each processor.

11.3 Tuning Options for P-states

The CPUfreq subsystem offers several tuning options for P-states: You can switch
between the different governors or change individual governor parameters.

Though you can view or adjust the current settings manually (in /sys/devices/
system/cpu/cpufreq orin /sys/devices/system/cpu/
cpu*/cpufreq for machines with multiple cores), we advise to use

the tools provided by cpufrequtils for that. After you have installed the
cpufrequtils package, you can make use of the coufreg-info and
cpufreg-set command line tools as described below.

140 System Analysis and Tuning Guide

11.3.1 Viewing Current Settings with
cpufreq-info

The cpufreg-info command helps you to retrieve CPUfreq kernel information.
Run without any options, it collects the information available for your system and
shows an output similar to the following:

cpufrequtils 004: cpufreg-info (C) Dominik Brodowski 2004-2006
Report errors and bugs to http://bugs.opensuse.org, please.
analyzing CPU O:
driver: acpi-cpufreq
CPUs which need to switch frequency at the same time: 0
hardware limits: 2.80 GHz - 3.40 GHz
available frequency steps: 3.40 GHz, 2.80 GHz
available cpufreq governors: conservative, userspace, powersave, ondemand, performance
current policy: frequency should be within 2.80 GHz and 3.40 GHz.
The governor "performance" may decide which speed to use
within this range.
current CPU frequency is 3.40 GHz.
analyzing CPU 1:
driver: acpi-cpufreq
CPUs which need to switch frequency at the same time: 1
hardware limits: 2.80 GHz - 3.40 GHz
available frequency steps: 3.40 GHz, 2.80 GHz
available cpufreq governors: conservative, userspace, powersave, ondemand, performance
current policy: frequency should be within 2.80 GHz and 3.40 GHz.
The governor "performance" may decide which speed to use
within this range.
current CPU frequency is 3.40 GHz.

Using the appropriate options, you can view the current CPU frequency, the
minimum and maximum CPU frequency allowed, show the currently used CPUfreq
policy, the available CPUfreq governors, or determine the CPUfreq kernel driver
used. For more details and the available options, refer to the cpufreg—info man
page or run cpufreg-info —-help.

11.3.2 Modifying Current Settings with
cpufreg-set

To modify CPUfreq settings, use the coufreg—set command as root. It allows
you set values for the minimum or maximum CPU frequency the governor may
select or to create a new governor. With the —c option, you can also specify for
which of the processors the settings should be modified. That makes it easy to use
a consistent policy across all processors without adjusting the settings for each

Power Management 141

processor individually. For more details and the available options, refer to the
cpufreg-set man page or run cpufreg-set —--help.

You can switch to another governor at runtime with the —g option. For example, the
following command will activate the on-demand governor:

cpufreg-set —-g ondemand

If you want the change in the governor to persist after a reboot or shutdown, use the
pm-profiler as described in Section 11.5, “Creating and Using Power Management
Profiles” (page 144).

11.3.3 Modifying Further Settings

Apart from the governor settings that can be influenced with cpufreg-set
(like minimum or maximum CPU frequency to be used), you can also tune further
governor parameters manually, for example, Ignoring Nice Values in Processor
Utilization (page 142).

Another parameter that significantly impacts the performance loss caused by
dynamic frequency scaling is the sampling rate (rate at which the governor checks
the current CPU load and adjusts the processor's frequency accordingly). Its default
value depends on a BIOS value and it should be as low as possible. However, in
modern systems, an appropriate sampling rate is set by default and does not need
manual intervention.

Procedure 11.1 Ignoring Nice Values in Processor Utilization

One parameter you might want to change for the on-demand or conservative
governor is ignore_nice_load.

Each process has a niceness value associated with it. This value is used by the kernel
to determine which processes require more processor time than others. The higher
the nice value, the lower the priority of the process. Or: the “nicer” a process, the less
CPU it will try to take from other processes.

If the ignore_nice_load parameter for the on-demand or conservative governor
is set to 1, any processes with a nice value will not be counted toward the overall
processor utilization. When ignore_nice_load is set to O (default value), all
processes are counted toward the utilization. Adjusting this parameter can be useful

142 System Analysis and Tuning Guide

if you are running something that requires a lot of processor capacity but you do not
care about the runtime.

1 Change to the subdirectory of the governor whose settings you want to modify, for
example:

cd /sys/devices/system/cpu/cpulO/cpufreq/conservative/

2 Show the current value of ignore_nice_load with:

cat ignore_nice_load

3 To set the value to 1, execute:

echo 1 > ignore_nice_load

When setting the 1gnore_nice_1load value for cpu0, the same value is
automatically used for all cores. In this case, you do not need to repeat the steps
above for each of the processors where you want to modify this governor parameter.

11.4 Tuning Options for C-states

By default, openSUSE uses C-states appropriately. The only parameter you might
want to touch for optimization is the sched_mc_power_savings scheduler.
Instead of distributing a work load across all cores with the effect that all cores are
utilized only at a minimum level, the kernel can try to schedule processes on as

few cores as possible so that the others can go idle. This helps to save power as it
allows some processors to be idle for a longer time so they can reach a higher C-
state. However, the actual savings depend on a number of factors, for example how
many processors are available and which C-states are supported by them (especially
deeper ones such as C3 to C6).

If sched_mc_power_savings is set to O (default value), no special scheduling
is done. If it is set to 1, the scheduler tries to consolidate the work onto the fewest
number of processors possible in the case that all processors are a little busy. To
modify this parameter, proceed as follows:

Procedure 11.2 Scheduling Processes on Cores
1 Change to the subdirectory where the scheduler is located:

cd /sys/devices/system/cpu/

Power Management 143

2 Show the current value of sched_mc_power_savings with:

cat sched_mc_power_savings

3 To set the value to 1, execute:

echo 1 > sched_mc_power_savings

11.5 Creating and Using Power
Management Profiles

openSUSE includes pm-profiler, intended for server use. It is a script infrastructure
to enable or disable certain power management functions via configuration files.

It allows you to define different profiles, each having a specific configuration file
for defining different settings. A configuration template for new profiles can be
found at /usr/share/doc/packages/pm-profiler/config
.template . The template contains a number of parameters you can use for

your profile, including comments on usage and links to further documentation. The
individual profiles are stored in /etc/pm-profiler/ . The profile that will be
activated on system start, is defined in /etc/pm-profiler.conf

Procedure 11.3 Creating and Switching Power Profiles
To create a new profile, proceed as follows:

1 Create a directory in /etc/pm-profiler/ , containing the profile name, for
example:
mkdir /etc/pm-profiler/testprofile

2 To create the configuration file for the new profile, copy the profile template to
the newly created directory:

cp /usr/share/doc/packages/pm-profiler/config.template \
/etc/pm-profiler/testprofile/config

3 Edit the settings in /etc/pm-profiler/testprofile/config and
save the file. You can also remove variables that you do not need—they will be
handled like empty variables, the settings will not be touched at all.

4 Edit /etc/pm-profiler.conf . The PM_PROFILER_PROFILE
variable defines which profile will be activated on system start. If it has no value,
the default system or kernel settings will be used. To set the newly created profile:

144 System Analysis and Tuning Guide

PM_PROFILER_PROFILE="testprofile"

The profile name you enter here must match the name you used in the path to
the profile configuration file (/etc/pm-profiler/testprofile/
config), not necessarily the NAME you used for the profile in the /etc/pm
-profiler/testprofile/config

5 To activate the profile, run

rcpm-profiler start

or

/usr/lib/pm-profiler/enable-profile testprofile

Though you have to manually create or modify a profile by editing the respective
profile configuration file, you can use YaST to switch between different profiles.
Start YaST and select System > Power Management to open the Power Management
Settings. Alternatively, become root and execute yast2 power-management
on a command line. The drop-down list shows the available profiles. Default
means that the system default settings will be kept. Select the profile to use and click
Finish.

11.6 Monitoring Power
Consumption with powerTOP

A useful tool for monitoring system power consumption is powerTOP. It helps

you to identify the reasons for unnecessary high power consumption (for example,
processes that are mainly responsible for waking up a processor from its idle state)
and to optimize your system settings to avoid these. It supports both Intel and AMD
processors. The powertop package is available from the SUSE Linux Enterprise
SDK. For information how to access the SDK, refer to About This Guide (page v).

powerTOP combines various sources of information (analysis of programs, device
drivers, kernel options, amounts and sources of interrupts waking up processors from
sleep states) and shows them in one screen. Example 11.1, “Example powerTOP
Output” (page 146) shows which information categories are available:

Power Management 145

Example 11.1 Example powerTOP Output

Cn Avg residency P-states (frequencies)
o 2] (3] (4] 5}

CO (cpu running) (11.6%) 2.00 Ghz 0.1%
polling 0.0ms (0.0%) 2.00 Ghz 0.0%

Cc1 4.4ms (57.3%) 1.87 Ghz 0.0%

c2 10.0ms (31.1%) 1064 Mhz 99.9%
Wakeups—-from-idle per second : 11.2 interval: 5.0s ®

no ACPI power usage estimate available @

Top causes for wakeups: ®

96.2% (826.0) <interrupt> : extra timer interrupt

0.9% (8.0) <kernel core> : usb_hcd_poll_rh_status (rh_timer_func)

0.3% (2.4) <interrupt> : megasas

0.2% (2.0) <kernel core> : clocksource_watchdog (clocksource_watchdog)
0.2% (1.6) <interrupt> : ethl-TxRx-0

0.1% (1.0) <interrupt> : ethl-TxRx-4

[...

Suggestion: @ Enable SATA ALPM link power management via:

echo min_power > /sys/class/scsi_host/host0/link_power_management_policy

or press the S key.

©® The column shows the C-states. When working, the CPU is in state 0, when
resting it is in some state greater than 0, depending on which C-states are

available and how deep the CPU is sleeping.
The column shows average time in milliseconds spent in the particular C-state.
The column shows the percentages of time spent in various C-states. For

considerable power savings during idle, the CPU should be in deeper C-states
most of the time. In addition, the longer the average time spent in these C-

states, the more power is saved.
The column shows the frequencies the processor and kernel driver support on

your system.
® The column shows the amount of time the CPU cores stayed in different

frequencies during the measuring period.

Shows how often the CPU is awoken per second (number of interrupts). The
lower the number the better. The interval value is the powerTOP refresh
interval which can be controlled with the —t option. The default time to gather

data is 5 seconds.
@ When running powerTOP on a laptop, this line displays the ACPI information

on how much power is currently being used and the estimated time until

discharge of the battery. On servers, this information is not available.

Shows what is causing the system to be more active than needed. powerTOP

displays the top items causing your CPU to awake during the sampling period.
® Suggestions on how to improve power usage for this machine.

2]
3]

146 System Analysis and Tuning Guide

For more information, refer to the powerTOP project page at http://www
.lesswatts.org/projects/powertop/ . It also provides tips and
tricks and an informative FAQ section.

11.7 Troubleshooting

BIOS options enabled?
In order to make use of C-states or P-states, check your BIOS options:

e To use C-states, make sure to enable CPU C State or similar options to
benefit from power savings at idle.

* To use P-states and the CPUfreq governors, make sure to enable
Processor Performance States options or similar.

In case of a CPU upgrade, make sure to upgrade your BIOS, too. The BIOS
needs to know the new CPU and its valid frequencies steps in order to pass this
information on to the operating system.

CPUfreq subsystem enabled?
In openSUSE, the CPUfreq subsystem is enabled by default. To find out if the
subsystem is currently enabled, check for the following path in your system:
/sys/devices/system/cpu/cpufreq (or /sys/devices/
system/cpu/cpu*/cpufreq for machines with multiple cores). If
the cpuf reqg subdirectory exists, the subsystem is enabled.

Log file information?
Check syslog (usually /var/log/messages) for any output regrading the
CPUfreq subsystem. Only severe errors are reported there.

If you suspect problems with the CPUfreq subsystem on your machine, you can
also enable additional debug output. To do so, either use cpufreq.debug=7
as boot parameter or execute the following command as root:

echo 7 > /sys/module/cpufreq/parameters/debug
This will cause CPUfreq to log more information to dme sg on state transitions,
which is useful for diagnosis. But as this additional output of kernel messages

can be rather comprehensive, use it only if you are fairly sure that a problem
exists.

Power Management 147

http://www.lesswatts.org/projects/powertop/
http://www.lesswatts.org/projects/powertop/

11.8 For More Information

* A threepart, comprehensive article about tuning components with regards to power
efficiency is available at the following URLs:

* Reduce Linux power consumption, Part 1: The CPUfreq subsystem,
available at http://www.ibm.com/developerworks/
linux/library/l-cpufreq-1/2ca=dgr-
InxwO3ReduceLXPWR-P1dth-LX&S_ _TACT=105AGX59&S
_CMP=grlnxw03

* Reduce Linux power consumption, Part 2: General and governor-specific
settings, available at http://www. ibm.com/developerworks/
linux/library/l-cpufreqg-2/?ca=dgr—
InxwO3ReducelLXPWR-P1dth-1LX&S_ TACT=105AGX59&S
_CMP=grlnxw03

* Reduce Linux power consumption, Part 3: Tuning results, available
athttp://www.ibm.com/developerworks/
linux/library/l-cpufreq-3/?ca=dgr-
Inxw03ReducelLXPWR-P1dth-LX&S_TACT=105AGX59&S
_CMP=grlnxw03

* The LessWatts.org project deals with how to save power, reduce costs and increase
efficiency on Linux systems. Find the project home page at http: //www
.lesswatts.org/ . The project page also holds an informative FAQs
section at http://www.lesswatts.org/documentation/faqg/
index.php and provides useful tips and tricks. For tips dealing with the CPU
level, refer to http://www.lesswatts.org/tips/cpu.php
For more information about powerTOP, refer to http://www.lesswatts
.org/projects/powertop/

» There is also platform-specific power saving information available, for example:
HP ProLiant Server Power Management on SUSE Linux Enterprise Server 11—
Integration Note , available from http://h18004.wwwl.hp.com/
products/servers/technology/whitepapers/os—-techwp

.html

148 System Analysis and Tuning Guide

http://www.ibm.com/developerworks/linux/library/l-cpufreq-1/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-1/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-1/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-1/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-2/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-2/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-2/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-2/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-3/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-3/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-3/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-3/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.lesswatts.org/
http://www.lesswatts.org/
http://www.lesswatts.org/documentation/faq/index.php
http://www.lesswatts.org/documentation/faq/index.php
http://www.lesswatts.org/tips/cpu.php
http://www.lesswatts.org/projects/powertop/
http://www.lesswatts.org/projects/powertop/
http://h18004.www1.hp.com/products/servers/technology/whitepapers/os-techwp.html
http://h18004.www1.hp.com/products/servers/technology/whitepapers/os-techwp.html
http://h18004.www1.hp.com/products/servers/technology/whitepapers/os-techwp.html

Part V. Kernel Tuning

Installing Multiple Kernel
Versions

openSUSE supports the parallel installation of multiple kernel versions. When
installing a second kernel, a boot entry and an initrd are automatically created, so
no further manual configuration is needed. When rebooting the machine, the newly
added kernel is available as an additional boot option.

Using this functionality, you can safely test kernel updates while being able to
always fall back to the proven former kernel. To do so, do not use the update tools
(such as the YaST Online Update or the updater applet), but instead follow the
process described in this chapter.

WARNING: Support Entitlement

Please be aware that you loose your entire support entitlement for the
machine when installing a self-compiled or a third-party kernel. Only
kernels shipped with openSUSE and kernels delivered via the official
update channels for openSUSE are supported.

TIP: Check Your Bootloader Configuration Kernel

It is recommended to check your bootloader config after having installed
another kernel in order to set the default boot entry of your choice. See
Pazpen “Configuring the Boot Loader with YaST” ('naBa 18, The Boot
Loader GRUB, TReference) for more information. To change the default
append line for new kernel installations, adjust /etc/sysconfig/
bootloader prior to installing a new kernel. For more information refer

Installing Multiple Kernel Versions 151

to Pasnen “The File /etc/sysconfig/bootloader ”(naea 18, The
Boot Loader GRUB, TReference).

12.1 Enabling Multiversion Support

Installing multiple versions of a software package (multiversion support) is not
enabled by default. To enable this feature, proceed as follows:

1 Open /etc/zypp/zypp.cont with the editor of your choice as root, for
example

sudo vi /etc/zypp/zypp.conf

2 Search for the string multiversion. To enable multiversion for all kernel
packages capable of this feature, uncomment the following line

multiversion = provides:multiversion (kernel)
by removing the # character.

To restrict multiversion support to certain kernel flavors, specify the package
names as a comma-separated list, for example

multiversion = kernel-default,kernel-default-base,kernel-source

3 Save your changes.

12.2 Installing/Removing Multiple
Kernel Versions with YaST

1 Start YaST and open the software manager via Software > Software Mannagment.

2 List all packages capable of providing multiple versions by choosing View >
Package Groups > Multiversion Packages.

152 System Analysis and Tuning Guide

Figure 12.1 The YaST Software Manager - Multiversion View

File Package Configuration Dependencies Options Extras Help

Wiew > | Sgarch RPM Groups = |nstallation Summary | Package Groups =)
Package Groups A A
GNONME Desktop ~ Package Summary Installed (Available)
-~ B cluster-network-kmp-default IP Virtual Ser... 1.4_2.6.329_0.5-2.1.49
KDE Desktop % cluster-networkckmp-xen IP Virtual Ser... 1.4_2.6.32.9_0.5-2.1.49
B drbd-kmp-default Distributed R 837 26329 05028
\é Other Desktops [kernel-default The Standard.. 26.329-05.1
3 - E kemel-default-hase Base Module... 2.6.32.8-05.1
g Publishing . kernel-default-devel Development . 26328051
g . E kernel-source The Linux Ker... 2.6.32.8-05.1
4 Admin Tools MW | B kemekxen The Xen Kemel 2.6.32.8-05.1
m L lizati % kernel-xen-base The Xen Kern.. 26323-05.1
ocalization % kernek-xen-devel The Xen Kemel 2.6.32.8-05.1
@& Security B ocfs2-kmp-default Oracle Cluste... 1.4_2.6.32.9_0.54.85
Tr - - -
Uw I ocfs2-kmp-xen Oracle Cluste.. 1.4 263239 05485
@ Network [brocade-bna-kmp-default Brocade 10G... (2.1.0.0 26.328 0 50.6.22) 5]
Gl l B
2 v
\j Unknown GFOUD Description Technical Data Dependencies | Wersions | File List Changg < »
D =
s Suggested Packages
(&8} 9d g kernel-default
~D
(:3 Recommended Packages I 26.32.905.1-x86_64 from SLES 11 SP1 RC1 with priority 99 and vendor SU
\:;3 Orphaned Packages [[] 2.6.32.8-0.3.1-x86_64 from Old Kemels (for testing only) with priority 200 and
O .)
a Multiversion Packages
>
\’j)’ All Packages] L B
[~) Cancel Accept

3 Select a package and open its Version tab in the bottom pane on the left.

4 To install a package, click its checkbox. A green checkmark indicates it is selected
for installation.

To remove an already installed package (marked with a white checkmark), click
its checkbox until a red X indicates it is selected for removal.

5 Click Accept to start the installation.

12.3 Installing/Removing Multiple
Kernel Versions with zypper

1 Use the command zypper se —s 'kernel*' to display a list of all kernel
packages available:

Installing Multiple Kernel Versions 153

S | Name | Type | Version | Arch | Repository
B R o o o o
v | kernel-default | package | 2.6.32.10-0.4.1 | x86_64 | Alternative Kernel
i | kernel-default | package | 2.6.32.9-0.5.1 | x86_64 | (System Packages)

| kernel-default | srcpackage | 2.6.32.10-0.4.1 | noarch | Alternative Kernel
i | kernel-default | package | 2.6.32.9-0.5.1 | x86_64 | (System Packages)

2 Specify the exact version when installing:

zypper in kernel-default-2.6.32.10-0.4.1

3 When uninstalling a kernel, use the commands zypper se -si 'kernel*'
to list all kernels installed and zypper rm PACKAGENAME-VERSION to
remove the package.

154 System Analysis and Tuning Guide

Tuning Per-Device I/O
Performance

13.1 I/0 Scheduler -- /sys/
block/<device>/queue/scheduler

This parameter allows changing the I/O scheduler algorithm. There are three options:

13.1.1 CFQ

This is the default option. Fairness-oriented I/O scheduler. The algorithm assigns
each thread a time slice in which it is allowed to submit I/O to disk. This way each
thread gets a fair share of I/O throughput. This I/O scheduler also allows assigning
tasks I/O priorities which are taken into account during scheduling decisions (see
man 1 ionice). The CFQ scheduler has the following parameters:

/sys/block/ <device>/queue/iosched/slice_idle
When a task has no more I/O to submit in its timeslice, the I/O scheduler waits
for a while before scheduling the next thread to improve locality of I/0. For
media where locality does not play a big role (SSDs, SANs with lots of disks)
setting /sys/block/ <device>/queue/iosched/slice_idle
to 0 can improve the throughput considerably.

/sys/block/ <device>/queue/iosched/quantum
This option limits the maximum number of requests that are being processed
by the device at once. The default value is 4. For a storage with several disks,

Tuning Per-Device I/O Performance 155

this setting can unnecessarily limit parallel processing of requests. Therefore,
increasing the value can improve performance although this can cause that the
latency of some I/O may be increased due to more requests being buffered inside
the storage. When changing this value, you can also consider tuning /sys/
block/ <device>/queue/iosched/slice_async_rq (the
default value is 2) which limits the maximum number of asynchronous requests,
usually writing requests, that are submitted in one timeslice.

/sys/block/ <device>/queue/iosched/low_latency
For workloads where the latency of I/O is crucial, setting /sys/
block/ <device>/queue/iosched/low_latency to 1 can
help.

13.1.2 NOOP

A trivial scheduler that just passes down the I/O that comes to it. Useful for checking
whether complex I/0O scheduling decisions of other schedulers are not causing I/O
performance regressions.

In some cases it can be helpful for devices that do I/O scheduling themselves, as
intelligent storage, or devices that do not depend on mechanical movement, like
SSDs. Usually, the DEADLINE I/O scheduler is a better choice for these devices. It
is a rather lightweight I/O scheduler but already does some useful work. However,
NOOP may produce better performance on certain workloads.

13.1.3 DEADLINE

Latency-oriented I/O scheduler. The algorithm preferably serves reads before writes.
/sys/block/ <device>/queue/iosched/writes_starved

controls how many reads can be sent to disk before it is possible to send writes

and tries to observe given deadlines /sys/block/ <device>/queue/
iosched/read_expire for reads and /sys/block/ <device>/
queue/iosched/write_expire for writes after which I/O must be
submitted to disk. This I/O scheduler can provide a superior throughput over the CFQ
I/O scheduler in cases where several threads read and write and fairness is not an
issue. For example, for several parallel readers from a SAN or some database-like
loads.

156 System Analysis and Tuning Guide

13.2 I/O Barrier Tuning

Most file systems (XFS, ext3, ext4, reiserfs) send write barriers to disk after fsync or
during transaction commits. Write barriers enforce proper ordering of writes, making
volatile disk write caches safe to use, at some performance penalty. If your disks

are battery-backed in one way or another, disabling barriers may safely improve
performance.

Sending write barriers can be disabled using the barrier=0 mount option (for
ext3, ext4, and reiserfs), or using the nobarrier mount option (for XFS).

WARNING

Disabling barriers when disks cannot guarantee caches are properly
written in case of power failure can lead to severe file system corruption
and data loss.

Tuning Per-Device I/O Performance 157

Tuning the Task Scheduler

Modern operating systems, such as openSUSE®, normally run many different tasks
at the same time. For example, you can be searching in a text file while receiving an
e-mail and copying a big file to an external hard drive. These simple tasks require
many additional processes to be run by the system. To provide each task with its
required system resources, the Linux kernel needs a tool to distribute available
system resources to individual tasks. And this is exactly what task scheduler does.

The following sections explain the most important terms related to process
scheduling. They also introduce information about the task scheduler policy,
scheduling algorithm, description of the task scheduler used by openSUSE, and
references to other sources of relevant information.

14.1 Introduction

The Linux kernel controls the way tasks (or processes) are managed in the running
system. The task scheduler, sometimes called process scheduler, is the part of the
kernel that decides which task to run next. It is one of the core components of a
multitasking operating system (such as Linux), being responsible for best utilizing
system resources to guarantee that multiple tasks are being executed simultaneously.

14.1.1 Preemption

The theory behind task scheduling is very simple. If there are runnable processes in
a system, at least one process must always be running. If there are more runnable

Tuning the Task Scheduler 159

processes than processors in a system, not all the processes can be running all the
time.

Therefore, some processes need to be stopped temporarily, or suspended, so that
others can be running again. The scheduler decides what process in the queue will
run next.

As already mentioned, Linux, like all other Unix variants, is a multitasking operating
system. That means that several tasks can be running at the same time. Linux
provides a so called preemptive multitasking, where the scheduler decides when a
process is suspended. This forced suspension is called preemption. All Unix flavors
have been providing preemptive multitasking since the beginning.

14.1.2 Timeslice

The time period for which a process will be running before it is preempted is defined
in advance. It is called a process' timeslice and represents the amount of processor
time that is provided to each process. By assigning timeslices, the scheduler makes
global decisions for the running system, and prevents individual processes from
dominating over the processor resources.

14.1.3 Process Priority

The scheduler evaluates processes based on their priority. To calculate the current
priority of a process, the task scheduler uses complex algorithms. As a result, each
process is given a value according to which it is “allowed” to run on a processor.

14.2 Process Classification

Processes are usually classified according to their purpose and behavior. Although
the borderline is not always clearly distinct, generally two criterias are used to sort
them. These criteria are independent and do not exclude each other.

One approach is to classify a process either I/O-bound or processor-bound.

1I/O-bound
I/O stands for Input/Output devices, such as keyboards, mice, or optical and hard
disks. I/0-bound processes spend the majority of time submitting and waiting for

160 System Analysis and Tuning Guide

requests. They are run very frequently, but for short time intervals, not to block
other processes waiting for I/O requests.

processor-bound
On the other hand, processor-bound tasks use their time to execute a code,
and usually run until they are preempted by the scheduler. They do not block
processes waiting for I/O requests, and, therefore, can be run less frequently but
for longer time intervals.

Another approach is to divide processes by either being interactive, batch, or real-
time ones.

* [Interactive processes spend a lot of time waiting for I/O requests, such as keyboard
or mouse operations. The scheduler must wake up such process quickly on user
request, or the user will find the environment unresponsive. The typical delay is
approximately 100 ms. Office applications, text editors or image manipulation
programs represent typical interactive processes.

* Batch processes often run in the background and do not need to be responsive.
They usually receive lower priority from the scheduler. Multimedia converters,
database search engines, or log files analyzers are typical examples of batch
processes.

* Real-time processes must never be blocked by low-priority processes, and the
scheduler guarantees a short response time to them. Applications for editing
multimedia content are a good example here.

14.3 O(1) Scheduler

The Linux kernel version 2.6 introduced a new task scheduler, called O(1) scheduler
(see Big O notation [http://en.wikipedia.org/wiki/Big_O
_notation]), It was used as the default scheduler up to Kernel version 2.6.22.
Its main task is to schedule tasks within a fixed amount of time, no matter how many
runnable processes there are in the system.

The scheduler calculates the timeslices dynamically. However, to determine the

appropriate timeslice is a complex task: Too long timeslices cause the system to
be less interactive and responsive, while too short ones make the processor waste a

Tuning the Task Scheduler 161

http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation

lot of time on the overhead of switching the processes too frequently. The default
timeslice is usually rather low, for example 20ms. The scheduler determines the
timeslice based on priority of a process, which allows the processes with higher
priority to run more often and for a longer time.

A process does not have to utilize all its timeslice at once. For instance, a process
with a timeslice of 150ms does not have to be running for 150ms in one go. It can be
running in five different schedule slots for 30ms instead. Interactive tasks typically
benefit from this approach because they do not need such a large timeslice at once
while they need to be responsive as long as possible.

The scheduler also assigns process priorities dynamically. It monitors the processes'
behavior and, if needed, adjusts its priority. For example, a process which is being
suspended for a long time is brought up by increasing its priority.

14.4 Completely Fair Scheduler

Since the Linux kernel version 2.6.23, a new approach has been taken to the
scheduling of runnable processes. Completely Fair Scheduler (CES) became the
default Linux kernel scheduler. Since then, important changes and improvements
have been made. The information in this chapter applies to openSUSE with kernel
version 2.6.32. The scheduler environment was divided into several parts, and three
main new features were introduced:

Modular Scheduler Core
The core of the scheduler was enhanced with scheduling classes. These classes
are modular and represent scheduling policies.

Completely Fair Scheduler
Introduced in kernel 2.6.23 and extended in 2.6.24, CFS tries to assure that each
process obtains its “fair” share of the processor time.

Group Scheduling
For example, if you split processes into groups according to which user is
running them, CFS tries to provide each of these groups with the same amount of

processor time.

As aresult, CFS brings more optimized scheduling for both servers and desktops.

162 System Analysis and Tuning Guide

14.4.1 How CFS Works

CFS tries to guarantee a fair approach to each runnable task. To find the most
balanced way of task scheduling, it uses the concept of red-black tree. A red-
black tree is a type of self-balancing data search tree which provides inserting and
removing entries in a reasonable way so that it remains well balanced. For more
information, see the wiki pages of Red-black tree [http://en.wikipedia
.org/wiki/Red_black_tree].

When a task enters into the run queue (a planned time line of processes to be
executed next), the scheduler records the current time. While the process waits for
processor time, its “wait” value gets incremented by an amount derived from the total
number of tasks currently in the run queue and the process priority. As soon as the
processor runs the task, its “wait” value gets decremented. If the value drops below a
certain level, the task is preempted by the scheduler and other tasks get closer to the
processor. By this algorithm, CFS tries to reach the ideal state where the “wait” value
is always zero.

14.4.2 Grouping Processes

Since the Linux kernel version 2.6.24, CFS can be tuned to be fair to users or groups
rather than to tasks only. Runnable tasks are then grouped to form entities, and CFS
tries to be fair to these entities instead of individual runnable tasks. The scheduler
also tries to be fair to individual tasks within these entities.

Tasks can be grouped in two mutually exclusive ways:

* By user IDs

* By kernel control groups.

The way the kernel scheduler lets you group the runnable tasks depends on
setting the kernel compile-time options CONFIG_FAIR_USER_SCHED and
CONFIG_FAIR_CGROUP_SCHED. The default setting in openSUSE® 11.4 is to

use control groups, which lets you create groups as needed. For more information,
see Chapter 10, Kernel Control Groups (page 125).

Tuning the Task Scheduler 163

http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree

14.4.3 Kernel Configuration Options

Basic aspects of the task scheduler behavior can be set through the kernel
configuration options. Setting these options is part of the kernel compilation
process. Because kernel compilation process is a complex task and out of this
document's scope, refer to relevant source of information (for example http://
en.opensuse.org/Configure,_Build_and_Install_a
_Custom_Linux_Kernel).

WARNING: Kernel Compilation

If you run openSUSE on a kernel that was not shipped with it, for example
on a self-compiled kernel, you loose the entire support entitlement.

14.4.4 Terminology

Documents regarding task scheduling policy often use several technical terms which
you need to know to understand the information correctly. Here are some of them:

Latency
Delay between the time a process is scheduled to run and the actual process

execution.

Granularity
The relation between granularity and latency can be expressed by the following

equation:

gran = (lat / rtasks) - (lat / rtasks / rtasks)

where gran stands for granularity, lat stand for latency, and rtasks is the number
of running tasks.

SCHED_BATCH
Scheduling policy designed for CPU-intensive tasks.

SCHED_OTHER
Default Linux time-sharing scheduling policy.

164 System Analysis and Tuning Guide

http://en.opensuse.org/Configure,_Build_and_Install_a_Custom_Linux_Kernel
http://en.opensuse.org/Configure,_Build_and_Install_a_Custom_Linux_Kernel
http://en.opensuse.org/Configure,_Build_and_Install_a_Custom_Linux_Kernel

14.4.5 Runtime Tuning
The sysct1 interface for examining and changing kernel parameters at runtime
introduces important variables by means of which you can change the default

behavior of the task scheduler. The syntax of the sysct1 is simple, and all the
following commands must be entered on the command line as root.

To read a value from a kernel variable, enter

sysctl variable

To assign a value, enter

sysctl variable=value

To get a list of all scheduler related sysct1 variables, enter

sysctl -A | grep "sched" | grep -v "domain"
saturn.example.com:~ # sysctl -A | grep "sched" | grep -v "domain"
kernel.sched_child_runs_first = 0

kernel.sched_min_granularity_ns = 1000000
kernel.sched_latency_ns = 5000000
kernel.sched_wakeup_granularity_ns = 1000000
kernel.sched_shares_ratelimit = 250000
kernel.sched_tunable_scaling = 1
kernel.sched_shares_thresh = 4
kernel.sched_features = 15834238
kernel.sched_migration_cost = 500000
kernel.sched_nr_migrate = 32
kernel.sched_time_avg = 1000
kernel.sched_rt_period_us = 1000000
kernel.sched_rt_runtime_us = 950000
kernel.sched_compat_yield = 0

Note that variables ending with “_ns” and “_us” accept values in nanoseconds and
microseconds, respectively.

A list of the most important task scheduler sysct1 tuning variables (located at /
proc/sys/kernel/) with a short description follows:

sched_child_runs_first
A freshly forked child runs before the parent continues execution. Setting this
parameter to 1 is beneficial for an application in which the child performs an

Tuning the Task Scheduler 165

execution after fork. For example make -3j<NO_CPUS> performs better when
sched_child_runs_first is turned off. The default value is 0.

sched_compat_yield
Enables the aggressive yield behavior of the old O(1) scheduler. Java applications
that use synchronization extensively perform better with this value set to 1. Only
use it when you see a drop in performance. The default value is 0.

Expect applications that depend on the sched_yield() syscall behavior to perform
better with the value set to 1.

sched_migration_cost
Amount of time after the last execution that a task is considered to be “cache
hot” in migration decisions. A “hot” task is less likely to be migrated, so
increasing this variable reduces task migrations. The default value is 500000

(ns).

If the CPU idle time is higher than expected when there are runnable processes,
try reducing this value. If tasks bounce between CPUs or nodes too often, try
increasing it.

sched_latency_ns
Targeted preemption latency for CPU bound tasks. Increasing this variable
increases a CPU bound task's timeslice. A task's timeslice is its weighted fair
share of the scheduling period:

timeslice = scheduling period * (task's weight/total weight of tasks in the run
queue)

The task's weight depends on the task's nice level and the scheduling policy.
Minimum task weight for a SCHED_OTHER task is 15, corresponding to nice
19. The maximum task weight is 88761, corresponding to nice -20.

Timeslices become smaller as the load increases. When the number of runnable
tasks exceeds sched_latency_ns/sched_min_granularity_ns, the

slice becomes number_of_running_tasks * sched_min_granularity_ns.
Prior to that, the slice is equal to sched_latency_ns.

This value also specifies the maximum amount of time during which a sleeping

task is considered to be running for entitlement calculations. Increasing this
variable increases the amount of time a waking task may consume before being

166 System Analysis and Tuning Guide

preempted, thus increasing scheduler latency for CPU bound tasks. The default
value is 20000000 (ns).

sched_min_granularity_ns
Minimal preemption granularity for CPU bound tasks. See
sched_latency_ns for details. The default value is 4000000 (ns).

sched_wakeup_granularity_ns
The wake-up preemption granularity. Increasing this variable reduces wake-up
preemption, reducing disturbance of compute bound tasks. Lowering it improves
wake-up latency and throughput for latency critical tasks, particularly when a
short duty cycle load component must compete with CPU bound components.
The default value is 5000000 (ns).

WARNING

Settings larger than half of sched_latency_ns will result in zero
wake-up preemption and short duty cycle tasks will be unable to
compete with CPU hogs effectively.

sched_rt_period_us
Period over which real-time task bandwidth enforcement is measured. The
default value is 27000000 (us).

sched_rt_runtime_us
Quantum allocated to real-time tasks during sched_rt_period_us. Setting to
-1 disables RT bandwidth enforcement. By default, RT tasks may consume
95%CPU/sec, thus leaving 5%CPU/sec or 0.05s to be used by SCHED_OTHER
tasks.

sched_features
Provides information about specific debugging features.

sched_stat_granularity_ns
Specifies the granularity for collecting task scheduler statistics.

sched_nr_migrate
Controls how many tasks can be moved across processors through migration
software interrupts (softirq). If a large number of tasks is created by
SCHED_OTHER policy, they will all be run on the same processor. The

Tuning the Task Scheduler 167

default value is 32. Increasing this value gives a performance boost to large
SCHED_OTHER threads at the expense of increased latencies for real-time
tasks.

14.4.6 Debugging Interface and Scheduler
Statistics

CFS comes with a new improved debugging interface, and provides runtime statistics
information. Relevant files were added to the /proc file system, which can be
examined simply with the cat or less command. A list of the related /proc files
follows with their short description:

/proc/sched_debug
Contains the current values of all tunable variables (see Section 14.4.5, “Runtime
Tuning” (page 165)) that affect the task scheduler behavior, CFS statistics,
and information about the run queue on all available processors.
saturn.example.com:~ # less /proc/sched_debug

Sched Debug Version: v0.09, 2.6.32.8-0.3-default #1
now at 2413026096.408222 msecs

.jiffies : 4898148820
.sysctl_sched_latency : 5.000000
.sysctl_sched_min_granularity : 1.000000
.sysctl_sched_wakeup_granularity : 1.000000
.sysctl_sched_child_runs_first : 0.000000
.sysctl_sched_features : 15834238
.sysctl_sched_tunable_scaling : 1 (logaritmic)

cpu#0, 1864.411 MHz

.nr_running HE

.load : 1024
.nr_switches : 37539000
.nr_load_updates : 22950725

[...]
cfs_rql0]:/

.exec_clock : 52940326.803842
.MIN_vruntime : 0.000001
.min_vruntime : 54410632.307072
.max_vruntime : 0.000001

[...]

rt_rql0]:/
.rt_nr_running : 0
.rt_throttled : 0
.rt_time 0.000000

.rt_runtime

168 System Analysis and Tuning Guide

950.000000

runnable tasks:

task PID tree-key switches prio exec-runtime

sleep

sum—exec sum-—

0 120 54410632.307072 13.836804

R cat 16884 54410632.307072
0.000000

/proc/schedstat

Displays statistics relevant to the current run queue. Also domain-specific
statistics for SMP systems are displayed for all connected processors. Because
the output format is not user-friendly, read the contents of /usr/src/
linux/Documentation/scheduler/sched-stats.txt for

more information.

/proc/PID/sched

Displays scheduling information on the process with id PID.

saturn.example.com:~ # cat /proc/ pidof nautilus’ /sched

nautilus (4009, #threads:

se.exec_start
se.vruntime
se.sum_exec_runtime
se.avg_overlap
se.avg_wakeup
se.avg_running
se.walt_start
se.sleep_start

[...]
nr_voluntary_switches
nr_involuntary_switches
se.load.weight
policy
prio

clock-delta

2419575150.
54549795.
4867855.

0.

3.

0.

.000000
2419575150.

0

14.5 For More Information

To get a compact knowledge about Linux kernel task scheduling, you need to explore
several information sources. Here are some of them:

560531
870151
829415
401317
247651
323432

560531

938552
71872
1024

0

120
109

* For task scheduler System Calls description, see the relevant manual page (for
example man 2 sched_setaffinity).

* General information on scheduling is described in Scheduling [http://en
.wikipedia.org/wiki/Scheduling_ (computing)] wiki page.

Tuning the Task Scheduler 169

http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Scheduling_(computing)

* General information on Linux task scheduling is described in Inside the Linux
scheduler [http://www.ibm.com/developerworks/linux/
library/l-scheduler/].

* Information specific to Completely Fair Scheduler is available in Multiprocessing
with the Completely Fair Scheduler [http://www.ibm.com/
developerworks/linux/library/l-cfs/?ca=dgr—-
Inxw06CFC4Linux]

* Information specific to tuning Completely Fair Scheduler is available in
Tuning the Linux Kernel’s Completely Fair Scheduler [http://www
.hotaboutlinux.com/2010/01/tuning-the-linux-
kernels—-completely-fair—-scheduler/]

* A useful lecture on Linux scheduler policy and algorithm is available in http://
www.inf.fu-berlin.de/lehre/SS01/0S/Lectures/
Lecture(08.pdf

* A good overview of Linux process scheduling is given in Linux Kernel
Development by Robert Love (ISBN-10: 0-672-32512-8). See http: //www
.informit.com/articles/article.aspx?p=101760

* A very comprehensive overview of the Linux kernel internals is given in
Understanding the Linux Kernel by Daniel P. Bovet and Marco Cesati (ISBN
978-0-596-00565-8).

¢ Technical information about task scheduler is covered in files under /uszr/
src/linux/Documentation/scheduler

170 System Analysis and Tuning Guide

http://www.ibm.com/developerworks/linux/library/l-scheduler/
http://www.ibm.com/developerworks/linux/library/l-scheduler/
http://www.ibm.com/developerworks/linux/library/l-cfs/?ca=dgr-lnxw06CFC4Linux
http://www.ibm.com/developerworks/linux/library/l-cfs/?ca=dgr-lnxw06CFC4Linux
http://www.ibm.com/developerworks/linux/library/l-cfs/?ca=dgr-lnxw06CFC4Linux
http://www.hotaboutlinux.com/2010/01/tuning-the-linux-kernels-completely-fair-scheduler/
http://www.hotaboutlinux.com/2010/01/tuning-the-linux-kernels-completely-fair-scheduler/
http://www.hotaboutlinux.com/2010/01/tuning-the-linux-kernels-completely-fair-scheduler/
http://www.inf.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture08.pdf
http://www.inf.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture08.pdf
http://www.inf.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture08.pdf
http://www.informit.com/articles/article.aspx?p=101760
http://www.informit.com/articles/article.aspx?p=101760

Tuning the Memory
Management Subsystem

In order to understand and tune the memory management behavior of the kernel,
it is important to first have an overview of how it works and cooperates with other
subsystems.

The memory management subsystem, also called the virtual memory manager,

will subsequently be referred to as “VM”. The role of the VM is to manage the
allocation of physical memory (RAM) for the entire kernel and user programs. It

is also responsible for providing a virtual memory environment for user processes
(managed via POSIX APIs with Linux extensions). Finally, the VM is responsible
for freeing up RAM when there is a shortage, either by trimming caches or swapping
out “anonymous” memory.

The most important thing to understand when examining and tuning VM is how its
caches are managed. The basic goal of the VM's caches is to minimize the cost of
I/0 as generated by swapping and file system operations (including network file
systems). This is achieved by avoiding I/O completely, or by submitting I/O in better
patterns.

Free memory will be used and filled up by these caches as required. The more
memory is available for caches and anonymous memory, the more effectively caches
and swapping will operate. However, if a memory shortage is encountered, caches
will be trimmed or memory will be swapped out.

For a particular workload, the first thing that can be done to improve performance
is to increase memory and reduce the frequency that memory must be trimmed or
swapped. The second thing is to change the way caches are managed by changing
kernel parameters.

Tuning the Memory Management Subsystem 171

Finally, the workload itself should be examined and tuned as well. If an application
is allowed to run more processes or threads, effectiveness of VM caches can be
reduced, if each process is operating in its own area of the file system. Memory
overheads are also increased. If applications allocate their own buffers or caches,
larger caches will mean that less memory is available for VM caches. However, more
processes and threads can mean more opportunity to overlap and pipeline I/O, and
may take better advantage of multiple cores. Experimentation will be required for the
best results.

15.1 Memory Usage

Memory allocations in general can be characterized as “pinned” (also known as
“unreclaimable”), “reclaimable” or “swappable”.

15.1.1 Anonymous Memory

Anonymous memory tends to be program heap and stack memory (for example,
>malloc ()). Itis reclaimable, except in special cases such as m1ock or if there is
no available swap space. Anonymous memory must be written to swap before it can
be reclaimed. Swap I/O (both swapping in and swapping out pages) tends to be less
efficient than pagecache I/O, due to allocation and access patterns.

15.1.2 Pagecache

A cache of file data. When a file is read from disk or network, the contents are stored
in pagecache. No disk or network access is required, if the contents are up-to-date in
pagecache. tmpfs and shared memory segments count toward pagecache.

When a file is written to, the new data is stored in pagecache before being written
back to a disk or the network (making it a write-back cache). When a page has new
data not written back yet, it is called “dirty”. Pages not classified as dirty are “clean”.
Clean pagecache pages can be reclaimed if there is a memory shortage by simply
freeing them. Dirty pages must first be made clean before being reclaimed.

172 System Analysis and Tuning Guide

15.1.3 Buffercache

This is a type of pagecache for block devices (for example, /dev/sda). A file system
typically uses the buffercache when accessing its on-disk “meta-data” structures
such as inode tables, allocation bitmaps, and so forth. Buffercache can be reclaimed
similarly to pagecache.

15.1.4 Buffer Heads

Buffer heads are small auxiliary structures that tend to be allocated upon pagecache
access. They can generally be reclaimed easily when the pagecache or buffercache
pages are clean.

15.1.5 Writeback

As applications write to files, the pagecache (and buffercache) becomes dirty.
When pages have been dirty for a given amount of time, or when the amount of
dirty memory reaches a particular percentage of RAM, the kernel begins writeback.
Flusher threads perform writeback in the background and allow applications to
continue running. If the I/O cannot keep up with applications dirtying pagecache,
and dirty data reaches a critical percentage of RAM, then applications begin to be
throttled to prevent dirty data exceeding this threshold.

15.1.6 Readahead

The VM monitors file access patterns and may attempt to perform readahead.
Readahead reads pages into the pagecache from the file system that have not been
requested yet. It is done in order to allow fewer, larger I/O requests to be submitted
(more efficient). And for I/O to be pipelined (I/O performed at the same time as the
application is running).

15.1.7 VFS caches

Tuning the Memory Management Subsystem 173

Inode Cache

This is an in-memory cache of the inode structures for each file system. These
contain attributes such as the file size, permissions and ownership, and pointers to the
file data.

Directory Entry Cache

This is an in-memory cache of the directory entries in the system. These contain
a name (the name of a file), the inode which it refers to, and children entries. This
cache is used when traversing the directory structure and accessing a file by name.

15.2 Reducing Memory Usage

15.2.1 Reducing malloc (Anonymous)
Usage

Applications running on openSUSE 11.4 can allocate more memory compared to
openSUSE 10. This is due to g1 ibc changing its default behavior while allocating
userspace memory. Please see http://www.gnu.org/s/libc/
manual/html_node/Malloc-Tunable-Parameters.html for
explanation of these parameters.

To restore a openSUSE 10-like behavior, M_MMAP_THRESHOLD should be

set to 128*%1024. This can be done with mallopt() call from the application, or via
setting MALLOC_MMAP_THRESHOLD environment variable before running the
application.

15.2.2 Reducing Kernel Memory
Overheads

Kernel memory that is reclaimable (caches, described above) will be trimmed
automatically during memory shortages. Most other kernel memory can not be easily
reduced but is a property of the workload given to the kernel.

174 System Analysis and Tuning Guide

http://www.gnu.org/s/libc/manual/html_node/Malloc-Tunable-Parameters.html
http://www.gnu.org/s/libc/manual/html_node/Malloc-Tunable-Parameters.html

Reducing the requirements of the userspace workload will reduce the kernel memory
usage (fewer processes, fewer open files and sockets, etc.)

15.2.3 Memory Controller (Memory
Cgroups)

If the memory cgroups feature is not needed, it can be switched off by passing
cgroup_disable=memory on the kernel command line, reducing memory
consumption of the kernel a bit.

15.3 Virtual Memory Manager (VM)
Tunable Parameters

When tuning the VM it should be understood that some of the changes will take
time to affect the workload and take full effect. If the workload changes throughout
the day, it may behave very differently at different times. A change that increases
throughput under some conditions may decrease it under other conditions.

15.3.1 Reclaim Ratios

/proc/sys/vm/swappiness
This control is used to define how aggressively the kernel swaps out anonymous
memory relative to pagecache and other caches. Increasing the value increases
the amount of swapping. The default value is 60.

Swap I/0 tends to be much less efficient than other I/O. However, some
pagecache pages will be accessed much more frequently than less used
anonymous memory. The right balance should be found here.

If swap activity is observed during slowdowns, it may be worth reducing this
parameter. If there is a lot of I/O activity and the amount of pagecache in

the system is rather small, or if there are large dormant applications running,
increasing this value might improve performance.

Note that the more data is swapped out, the longer the system will take to swap
data back in when it is needed.

Tuning the Memory Management Subsystem 175

/proc/sys/vm/vfs_cache_pressure
This variable controls the tendency of the kernel to reclaim the memory which
is used for caching of VFS caches, versus pagecache and swap. Increasing this
value increases the rate at which VFS caches are reclaimed.

It is difficult to know when this should be changed, other than by
experimentation. The s1labtop command (part of the package procps) shows
top memory objects used by the kernel. The vfs caches are the "dentry" and the
"*_inode_cache" objects. If these are consuming a large amount of memory in
relation to pagecache, it may be worth trying to increase pressure. Could also
help to reduce swapping. The default value is 100.

/proc/sys/vm/min_free_kbytes
This controls the amount of memory that is kept free for use by special reserves
including “atomic” allocations (those which cannot wait for reclaim). This
should not normally be lowered unless the system is being very carefully
tuned for memory usage (normally useful for embedded rather than server
applications). If “page allocation failure” messages and stack traces are
frequently seen in logs, min_free_kbytes could be increased until the errors
disappear. There is no need for concern, if these messages are very infrequent.
The default value depends on the amount of RAM.

15.3.2 Writeback Parameters

One important change in writeback behavior since openSUSE 10 is that modification
to file-backed mmap() memory is accounted immediately as dirty memory (and
subject to writeback). Whereas previously it would only be subject to writeback after
it was unmapped, upon an msync() system call, or under heavy memory pressure.

Some applications do not expect mmap modifications to be subject to such writeback
behavior, and performance can be reduced. Berkeley DB (and applications using it)
is one known example that can cause problems. Increasing writeback ratios and times
can improve this type of slowdown.

/proc/sys/vm/dirty_background_ratio
This is the percentage of the total amount of free and reclaimable memory. When
the amount of dirty pagecache exceeds this percentage, writeback threads start
writing back dirty memory. The default value is 10 (%).

/proc/sys/vm/dirty_ratio

176 System Analysis and Tuning Guide

Similar percentage value as above. When this is exceeded, applications that want
to write to the pagecache are blocked and start performing writeback as well.
The default value is 40 (%).

These two values together determine the pagecache writeback behavior. If these
values are increased, more dirty memory is kept in the system for a longer time.
With more dirty memory allowed in the system, the chance to improve throughput
by avoiding writeback I/O and to submitting more optimal I/O patterns increases.
However, more dirty memory can either harm latency when memory needs to be
reclaimed or at data integrity (sync) points when it needs to be written back to disk.

15.3.3 Readahead parameters

/sys/block/ <bdev>/queue/read_ahead_kb
If one or more processes are sequentially reading a file, the kernel reads some
data in advance (ahead) in order to reduce the amount of time that processes
have to wait for data to be available. The actual amount of data being read in
advance is computed dynamically, based on how much "sequential” the 1/0
seems to be. This parameter sets the maximum amount of data that the kernel
reads ahead for a single file. If you observe that large sequential reads from a file
are not fast enough, you can try increasing this value. Increasing it too far may
result in readahead thrashing where pagecache used for readahead is reclaimed
before it can be used, or slowdowns due to a large amount of useless I/O. The
default value is 512 (kb).

15.3.4 Further VM Parameters

For the complete list of the VM tunable parameters, see /usr/src/linux/
Documentation/sysctl/vm.txt (available after having installed the
kernel-source package).

15.4 Non-Uniform Memory Access
(NUMA)

Another increasingly important role of the VM is to provide good NUMA allocation
strategies. NUMA stands for non-uniform memory access, and most of today's multi-

Tuning the Memory Management Subsystem 177

socket servers are NUMA machines. NUMA is a secondary concern to managing
swapping and caches in terms of performance, and there are lots of documents about
improving NUMA memory allocations. One particular parameter interacts with page
reclaim:

/proc/sys/vm/zone_reclaim_mode
This parameter controls whether memory reclaim is performed on a local
NUMA node even if there is plenty of memory free on other nodes. This
parameter is automatically turned on on machines with more pronounced NUMA
characteristics.

If the VM caches are not being allowed to fill all of memory on a NUMA
machine, it could be due to zone_reclaim_mode being set. Setting to 0 will
disable this behavior.

15.5 Monitoring VM Behavior

Some simple tools that can help monitor VM behavior:

1. vmstat: This tool gives a good overview of what the VM is doing. See
Section 2.1.1, “vmstat” (page 10) for details.

2. /proc/meminfo : This file gives a detailed breakdown of where memory is
being used. See Section 2.4.2, “Detailed Memory Usage: /proc/meminfo ”
(page 27) for details.

3. slabtop: This tool provides detailed information about kernel slab memory
usage. buffer_head, dentry, inode_cache, ext3_inode_cache, etc. are the major
caches. This command is available with the package procps.

178 System Analysis and Tuning Guide

Tuning the Network

The network subsystem is rather complex and its tuning highly depends on the
system use scenario and also on external factors such as software clients or hardware
components (switches, routers, or gateways) in your network. The Linux kernel aims
more at reliability and low latency than low overhead and high throughput. Other
settings can mean less security, but better performance.

16.1 Configurable Kernel Socket
Buffers

Networking is largely based on the TCP/IP protocol and a socket interface for
communication; for more information about TCP/IP, see ['naBa 23, Basic Networking
(TReference). The Linux kernel handles data it receives or sends via the socket
interface in socket buffers. These kernel socket buffers are tunable.

IMPORTANT: TCP Autotuning

Since kernel version 2.6.17 full autotuning with 4 MB maximum buffer
size exists. This means that manual tuning in most cases will not improve
networking performance considerably. It is often the best not to touch the
following variables, or, at least, to check the outcome of tuning efforts
carefully.

If you update from an older kernel, it is recommended to remove manual
TCP tunings in favor of the autotuning feature.

Tuning the Network 179

The special files in the /proc file system can modify the size and behavior of kernel
socket buffers; for general information about the /proc file system, see Section 2.6,
“The /proc File System” (page 32). Find networking related files in:
/proc/sys/net/core

/proc/sys/net/ipvi4
/proc/sys/net/ipvé

General net variables are explained in the kernel documentation (1inux/
Documentation/networking/sysctl/net.txt). Special ipv4
variables are explained in 1inux/Documentation/networking/ip-
sysctl.txt and linux/Documentation/networking/ipvs-—
sysctl.txt .

In the /proc file system, for example, it is possible to either set the Maximum
Socket Receive Buffer and Maximum Socket Send Buffer for all protocols, or both
these options for the TCP protocol only (in 1pv4) and thus overriding the setting for
all protocols (in core).

/proc/sys/net/ipvéd/tcp_moderate_rcvbuf
If /Jproc/sys/net/ipv4/tcp_moderate_rcvbuf is setto 1,
autotuning is active and buffer size is adjusted dynamically.

/proc/sys/net/ipvéd/tcp_rmem
The three values setting the minimum, initial, and maximum size of the Memory
Receive Buffer per connection. They define the actual memory usage, not just
TCP window size.

/proc/sys/net/ipv4/tcp_wmem
The same as tcp_rmem , but just for Memory Send Buffer per connection.

/proc/sys/net/core/rmem_max
Set to limit the maximum receive buffer size that applications can request.

/proc/sys/net/core/wmem_max
Set to limit the maximum send buffer size that applications can request.

Via /proc itis possible to disable TCP features that you do not need (all TCP
features are switched on by default). For example, check the following files:

/proc/sys/net/ipvéd/tcp_timestamps
TCP timestamps are defined in RFC1323.

180 System Analysis and Tuning Guide

/proc/sys/net/ipvd/tcp_window_scaling
TCP window scaling is also defined in RFC1323.

/proc/sys/net/ipv4/tcp_sack
Select acknowledgments (SACKS).

Use sysctl to read or write variables of the /proc file system. sysctl is
preferable to cat (for reading) and echo (for writing), because it also reads settings
from /etc/sysctl.conf and, thus, those settings survive reboots reliably.
With sysct1 you can read all variables and their values easily; as root use the
following command to list TCP related settings:

sysctl —-a | grep tcp

NOTE: Side-Effects of Tuning Network Variables

Tuning network variables can affect other system resources such as CPU
or memory use.

16.2 Detecting Network Bottlenecks
and Analyzing Network Traffic

Before starting with network tuning, it is important to isolate network bottlenecks
and network traffic patterns. There are some tools that can help you with detecting
those bottlenecks.

The following tools can help analyzing your network traffic: net stat, tcpdump,
and wireshark. Wireshark is a network traffic analyser.

16.3 Netfilter

The Linux firewall and masquerading features are provided by the Netfilter kernel
modules. This is a highly configurable rule based framework. If a rule matches a
packet, Netfilter accepts or denies it or takes special action (“target”) as defined by
rules such as address translation.

There are quite some properties, Netfilter is able to take into account. Thus, the more
rules are defined, the longer packet processing may last. Also advanced connection
tracking could be rather expensive and, thus, slowing down overall networking.

Tuning the Network 181

For more information, see the home page of the Netfilter and iptables project,
http://www.netfilter.org

16.4 For More Information

* Eduardo Ciliendo, Takechika Kunimasa: “Linux Performance and Tuning
Guidelines” (2007), esp. sections 1.5, 3.5, and 4.7: http://www.redbooks
.ibm.com/redpapers/abstracts/redp4285.html

* John Heffner, Matt Mathis: “Tuning TCP for Linux 2.4 and 2.6” (2006):

http://www.psc.edu/networking/projects/tcptune/
#Linux

182 System Analysis and Tuning Guide

http://www.netfilter.org
http://www.redbooks.ibm.com/redpapers/abstracts/redp4285.html
http://www.redbooks.ibm.com/redpapers/abstracts/redp4285.html
http://www.psc.edu/networking/projects/tcptune/#Linux
http://www.psc.edu/networking/projects/tcptune/#Linux

Part VI. Handling
System Dumps

Tracing Tools

openSUSE comes with a number of tools that help you obtain useful information
about your system. You can use the information for various purposes, for example,
to debug and find problems in your program, to discover places causing performance
drops, or to trace a running process to find out what system resources it uses. The
tools are mostly part of the installation media, otherwise you can install them from
the downloadable SUSE Software Development Kit.

NOTE: Tracing and Impact on Performance

While a running process is being monitored for system or library calls, the
performance of the process is heavily reduced. You are advised to use
tracing tools only for the time you need to collect the data.

17.1 Tracing System Calls with
strace

The st race command traces system calls of a process and signals received by the
process. st race can either run a new command and trace its system calls, or you
can attach st race to an already running command. Each line of the command's
output contains the system call name, followed by its arguments in parenthesis and
its return value.

Tracing Tools 185

To run a new command and start tracing its system calls, enter the command to be
monitored as you normally do, and add st race at the beginning of the command
line:

tux@mercury:~> strace ls

execve ("/bin/1s", ["1s"], [/* 52 vars */]) =0

brk (0) = 0x618000

mmap (NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \
= 0x7£9848667000

mmap (NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \
= 0x7£9848666000

access ("/etc/1ld.so.preload", R_OK) = -1 ENOENT \

(No such file or directory)

open ("/etc/ld.so.cache", O_RDONLY) =3

fstat (3, {st_mode=S_IFREG|0644, st_size=200411, ...}) =0

mmap (NULL, 200411, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7£9848635000

close (3) =0

open("/1lib64/librt.so.1", O_RDONLY) 3

[...]
mmap (NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \
= 0x7£d780£79000

write (1, "Desktop\nDocuments\nbin\ninst-sys\n", 31Desktop

Documents

bin

inst-sys

) = 31

close (1) =
munmap (0x7£d780£79000, 4096) =
close (2) =
exit_group (0) =

W O O O

To attach strace to an already running process, you need to specify the —p with
the process ID (P ID) of the process that you want to monitor:

tux@mercury:~> strace -p “pidof mysqgld’
Process 2868 attached - interrupt to quit

select (15, [13 14], NULL, NULL, NULL) =1 (in [14]

fecntl (14, F_SETFL, O_RDWR|O_NONBLOCK) =0

accept (14, {sa_family=AF_FILE, NULL}, [2]) = 31

fcntl (14, F_SETFL, O_RDWR) =0

getsockname (31, {sa_family=AF_FILE, path="/var/run/mysqgl"}, [28]) = 0
fcntl (31, F_SETFL, O_RDONLY) =0

fcntl (31, F_GETFL)

fentl (31, F_SETFL, O_RDWR|O_NONBLOCK)
[...]

setsockopt (31, SOL_IP, IP_TOS, [8], 4) = -1 EOPNOTSUPP (Operation \
not supported)

clone (child_stack=0x7fd1864801f0, flags=CLONE_VM|CLONE_FS|CLONE_ \
FILES|CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM|CLONE_SETTLS |CLONE_ \
PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7£fd1864809e0, \
t1s=0x7£d186480910, child_tidptr=0x7£d1864809e0) = 21993

select (15, [13 14], NULL, NULL, NULL

0x2 (flags O_RDWR)
0

186 System Analysis and Tuning Guide

The —e option understands several sub-options and arguments. For example, to trace
all attempts to open or write to a particular file, use the following:

tux@mercury:~> strace -e trace=open,write ls ~
open ("/etc/1ld.so.cache", O_RDONLY) =3

open("/1lib64/librt.so.1", O_RDONLY) =3
open("/1ib64/libselinux.so.1", O_RDONLY) = 3
open("/1lib64/libacl.so.1", O_RDONLY) =3
open("/1lib64/libc.so.6", O_RDONLY) =3

open ("/1ib64/libpthread.so.0", O_RDONLY) = 3

[...]

open ("/usr/lib/locale/cs_CZ.utf8/LC_CTYPE", O_RDONLY) = 3
open(".", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3
write (1, "addressbook.db.bak\nbin\ncxoffice\n"..., 311) = 311

To trace only network related system calls, use —e trace=network:

tux@mercury:~> strace -e trace=network -p 26520

Process 26520 attached - interrupt to quit

socket (PF_NETLINK, SOCK_RAW, 0) = 50

bind (50, {sa_family=AF_NETLINK, pid=0, groups=00000000}, 12) = 0
getsockname (50, {sa_family=AF_NETLINK, pid=26520, groups=00000000}, \
[12]) =0

sendto (50, "\24\0\0\0\26\0\1\3~p\315K\0\0\0O\O\O\O\O\O", 20, O,
{sa_family=AF_NETLINK, pid=0, groups=00000000}, 12) = 20

[...]

The —c calculates the time the kernel spent on each system call:

tux@mercury:~> strace -c find /etc -name xorg.conf
/etc/X11/xorg.conf

% time seconds usecs/call calls errors syscall
32.38 0.000181 181 1 execve
22.00 0.000123 0 576 getdents64
19.50 0.000109 0 917 31 open
19.14 0.000107 0 888 close
4.11 0.000023 2 10 mprotect
0.00 0.000000 0 1 write
[...]
0.00 0.000000 0 1 getrlimit
0.00 0.000000 0 1 arch_prctl
0.00 0.000000 0 3 1 futex
0.00 0.000000 0 1 set_tid_address
0.00 0.000000 0 4 fadvise64
0.00 0.000000 0 1 set_robust_list
100.00 0.000559 3633 33 total

To trace all child processes of a process, use —f:

tux@mercury:~> strace —-f rcapache2 status
execve ("/usr/sbin/rcapache2", ["rcapache2", "status"], [/* 81 vars */]) = 0

Tracing Tools 187

brk (0) = 0x69e000
mmap (NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \

= 0x7£3bb553b000

mmap (NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \
= 0x7£3bb553a000

[...]

[pid 4823] rt_sigprocmask (SIG_SETMASK, [], <unfinished ...>
[pid 4822] close(4 <unfinished ...>

[pid 4823] <... rt_sigprocmask resumed> NULL, 8) = 0

[pid 4822] <... close resumed>) =0

[...]

[pid 4825] mprotect (0x7fc42cbbd000, 16384, PROT_READ) = 0
[pid 4825] mprotect (0x60a000, 4096, PROT_READ) = 0

[pid 4825] mprotect (0x7fc42cded4000, 4096, PROT_READ) = 0
[pid 4825] munmap (0x7fc42cda2000, 261953) = 0

[...]

[pid 4830] munmap (0x7fbl1£f£f£f10000, 261953) = 0

[pid 4830] rt_sigprocmask (SIG_BLOCK, NULL, [], 8) =0

[pid 4830] open("/dev/tty", O_RDWR|O_NONBLOCK) = 3

[pid 4830] close(3)

[...]

read (255, "\n\n# Inform the caller not only v"..., 8192) = 73
rt_sigprocmask (SIG_BLOCK, NULL, [], 8) =0

rt_sigprocmask (SIG_BLOCK, NULL, [], 8) 0

exit_group (0)

If you need to analyze the output of st race and the output messages are too long
to be inspected directly in the console window, use —o. In that case, unnecessary
messages, such as information about attaching and detaching processes, are
suppressed. You can also suppress these messages (normally printed on the standard
output) with —q. To optionally prepend timestamps to each line with a system call,
use —t:

tux@mercury:~> strace -t -o strace_sleep.txt sleep 1; more strace_sleep.txt
08:44:06 execve ("/bin/sleep", ["sleep", "1"], [/* 81 vars */]) =0

08:44:06 brk(0) 0x606000

08:44:06 mmap (NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, \
-1, 0) = 0x7£8e78cc5000

[...]

08:44:06 close(3) =
08:44:06 nanosleep ({1, 0}, NULL) =
08:44:07 close (1)
08:44:07 close(2) =
08:44:07 exit_group (0)

D O O O O

The behavior and output format of strace can be largely controlled. For more
information, see the relevant manual page (man 1 strace).

188 System Analysis and Tuning Guide

17.2 Tracing Library Calls with
Itrace

ltrace traces dynamic library calls of a process. It is used in a similar way to
strace, and most of their parameters have a very similar or identical meaning.
By default, 1trace uses /etc/ltrace.conf or~/.ltrace.conf
configuration files. You can, however, specify an alternative one with the -F
config_file option.

In addition to library calls, 1t race with the —S option can trace system calls as
well:

tux@mercury:~> ltrace -S -o ltrace_find.txt find /etc -name \
xorg.conf; more ltrace_find.txt

SYS_brk (NULL) = 0x00628000
SYS_mmap (0, 4096, 3, 34, OxXffffffff) = 0x7£1327eal1000
SYS_mmap (0, 4096, 3, 34, Oxffffffff) = 0x7f1327ea0000
[...]

fnmatch ("xorg.conf", "xorg.conf", 0) =0

free (0x0062db80) = <void>
__errno_location () = 0x7f1327e5d698
__ctype_get_mb_cur_max (0x7£f££25227af0, 8192, 0x62e020, -1, 0) = 6

__ctype_get_mb_cur_max (0x7£££25227af0, 18, 0x7£1327e5d6£f0, 0x7f£f£25227afo0,
0x62e031) = 6
_ fprintf_ chk(0x7£1327821780, 1, 0x420cf7, O0x7fff25227af0, 0x62e031

<unfinished ...>

SYS_fstat (1, 0x7£££25227230) =0

SYS_mmap (0, 4096, 3, 34, Oxffffffff) = 0x7£1327e72000
SYS_write (1, "/etc/X11l/xorg.conf\n", 19) =19

[...]

You can change the type of traced events with the —e option. The following example
prints library calls related to fnmatch and st rlen functions:

tux@mercury:~> ltrace —-e fnmatch,strlen find /etc —-name xorg.conf

[...]

fnmatch ("xorg.conf", "xorg.conf", 0) =0
strlen ("Xresources") =10
strlen ("Xresources") = 10
strlen ("Xresources") = 10
fnmatch ("xorg.conf", "Xresources", 0) =1
strlen("xorg.conf.install") = 17

[...]

To display only the symbols included in a specific library, use -1 /path/to/
library:

tux@mercury:~> ltrace -1 /1ib64/librt.so.l sleep 1

Tracing Tools 189

clock_gettime (1, 0x7ff£f4b5c34d0, 0, 0, 0) =0
clock_gettime (1, 0Ox7fffd4b5c34c0, Oxffffffffff600180, -1, 0) = 0
+++ exited (status 0) +++

You can make the output more readable by indenting each nested call by the
specified number of space with the —-n num_of_spaces.

17.3 Debugging and Profiling with
Valgrind

Valgrind is a set of tools to debug and profile your programs so that they can
run faster and with less errors. Valgrind can detect problems related to memory
management and threading, or can also serve as a framework for building new
debugging tools.

17.3.1 Installation

Valgrind is not shipped with standard openSUSE distribution. To install it on your
system, you need to obtain SUSE Software Development Kit, and either install it as
an Add-On product and run

zypper install valgrind

or browse through the SUSE Software Development Kit directory tree, locate the
Valgrind package and install it with

rpm -1 valgrind-version_architecture.rpm

17.3.2 Supported Architectures

Valgrind runs on the following architectures:
* 1386
* x86_64 (AMD-64)

® ppc

190 System Analysis and Tuning Guide

* ppc6b4

17.3.3 General Information

The main advantage of Valgrind is that it works with existing compiled executables.
You do not have to recompile or modify your programs to make use of it. Run
Valgrind like this:

valgrind valgrind_options your—-prog your-program-options

Valgrind consists of several tools, and each provides specific functionality.
Information in this section is general and valid regardless of the used tool. The most
important configuration option is ——t ool . This option tells Valgrind which tool to
run. If you omit this option, memcheck is selected by default. For example, if you
wanttorun find ~ -name .bashrc with Valgrind's memcheck tools, enter
the following in the command line:

valgrind —--tool=memcheck find ~ —-name .bashrc
A list of standard Valgrind tools with a brief description follows:

memcheck
Detects memory errors. It helps you tune your programs to behave correctly.

cachegrind
Profiles cache prediction. It helps you tune your programs to run faster.

callgrind
Works in a similar way to cachegrind but also gathers additional cache-
profiling information.

exp—drd
Detects thread errors. It helps you tune your multi-threaded programs to behave
correctly.

helgrind
Another thread error detector. Similar to exp—drd but uses different techniques
for problem analysis.

massif
A heap profiler. Heap is an area of memory used for dynamic memory
allocation. This tool helps you tune your program to use less memory.

Tracing Tools 191

lackey
An example tool showing instrumentation basics.

17.3.4 Default Options

Valgrind can read options at start-up. There are three places which Valgrind checks:
1. The file .valgrindrc in the home directory of the user who runs Valgrind.

2. The environment variable SVALGRIND_OPTS

3. The file .valgrindrc in the current directory where Valgrind is runned from.

These resources are parsed exactly in this order, while later given options take
precedence over earlier processed options. Options specific to a particular Valgrind
tool must be prefixed with the tool name and a colon. For example, if you want
cachegrind to always write profile data to the /tmp/cachegrind_ PID
.log , add the following line to the .valgrindrc file in your home directory:

——cachegrind:cachegrind-out-file=/tmp/cachegrind_%p.log

17.3.5 How Valgrind Works

Valgrind takes control of your executable before it starts. It reads debugging
information from the executable and related shared libraries. The executable's code
is redirected to the selected Valgrind tool, and the tool adds its own code to handle
its debugging. Then the code is handed back to the Valgrind core and the execution
continues.

For example, memcheck adds its code, which checks every memory access.
As a consequence, the program runs much slower than in the native execution
environment.

Valgrind simulates every instruction of your program. Therefore, it not only checks
the code of your program, but also all related libraries (including the C library),
libraries used for graphical environment, and so on. If you try to detect errors with
Valgrind, it also detects errors in associated libraries (like C, X11, or Gtk libraries).
Because you probably do not need these errors, Valgrind can selectively, suppress
these error messages to suppression files. The ——gen—-suppressions=yes tells
Valgrind to report these suppressions which you can copy to a file.

192 System Analysis and Tuning Guide

Note that you should supply a real executable (machine code) as an Valgrind
argument. Therefore, if your application is run, for example, from a shell or a Perl
script you will by mistake get error reports related to /bin/sh (or /usr/bin/
perl). In such case, you can use ——trace—-children=yes or, which is better,
supply a real executable to avoid any processing confusion.

17.3.6 Messages

During its runtime, Valgrind reports messages with detailed errors and important
events. The following example explains the messages:

tux@mercury:~> valgrind --tool=memcheck find ~ -name .bashrc

[...]

==6558== Conditional jump or move depends on uninitialised wvalue (s)
==6558== at 0x400AE79: _dl_relocate_object (in /1ib64/1d-2.11.1.s0)
==6558== by 0x4003868: dl_main (in /1ib64/1d-2.11.1.s0)

[...]

==6558== Conditional jump or move depends on uninitialised value (s)
==6558== at 0x400AE82: _dl_relocate_object (in /1ib64/1d-2.11.1.s0)
==6558== by 0x4003868: dl_main (in /1ib64/1d-2.11.1.s0)

[...]

==6558== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)
==6558== malloc/free: in use at exit: 2,228 bytes in 8 blocks.
==6558== malloc/free: 235 allocs, 227 frees, 489,675 bytes allocated.

==6558== For counts of detected errors, rerun with: -v
==6558== searching for pointers to 8 not-freed blocks.
==6558== checked 122,584 bytes.

==6558==

==6558== LEAK SUMMARY:

==6558== definitely lost: 0 bytes in 0 blocks.
==6558== possibly lost: 0 bytes in 0 blocks.
==6558== still reachable: 2,228 bytes in 8 blocks.
==6558== suppressed: 0 bytes in 0 blocks.

==6558== Rerun with --leak-check=full to see details of leaked memory.

The ==6558== introduces Valgrind's messages and contains the process ID number
(PID). You can easily distinguish Valgrind's messages from the output of the
program itself, and decide which messages belong to a particular process.

To make Valgrind's messages more detailed, use —v or even -v -v.
Basically, you can make Valgrind send its messages to three different places:

1. By default, Valgrind sends its messages to the file descriptor 2, which is the
standard error output. You can tell Valgrind to send its messages to any other file
descriptor with the ——log-fd=file_descriptor_number option.

Tracing Tools 193

2. The second and probably more useful way is to send Valgrind's messages to a
file with -——1og-file=filename. This option accepts several variables, for
example, $p gets replaced with the PID of the currently profiled process. This way
you can send messages to different files based on their PID. $g{env_var} is
replaced with the value of the related env_var environment variable.

The following example checks for possible memory errors during the Apache Web
server restart, while following children processes and writing detailed Valgrind's
messages to separate files distinguished by the current process PID:

tux@mercury:~> valgrind -v —--tool=memcheck —--trace-children=yes \
—-log-file=valgrind_pid_%p.log rcapache2 restart

This process created 52 log files in the testing system, and took 75 seconds instead
of the usual 7 seconds needed to run rcapache?2 restart without Valgrind,
which is approximately 10 times more.

tux@mercury:~> ls -1 valgrind_pid *log

valgrind_pid_11780.1log

valgrind_pid_11782.1log

valgrind_pid_11783.1log

[...]

valgrind_pid_11860.1log

valgrind_pid_11862.1log

valgrind_pid_11863.1log

3. You may also prefer to send the Valgrind's messages over the network. You need
to specify the aa .bb. cc.dd IP address and port_num port number of the
network socket with the -—1og-socket=aa.bb. cc.dd:port_numoption.
If you omit the port number, 1500 will be used.

It is useless to send Valgrind's messages to a network socket if no application

is capable of receiving them on the remote machine. That is why valgrind-
listener, a simple listener, is shipped together with Valgrind. It accepts
connections on the specified port and copies everything it receives to the standard
output.

17.3.7 Error Messages

Valgrind remembers all error messages, and if it detects a new error, the error is
compared against old error messages. This way Valgrind checks for duplicate error
messages. In case of a duplicate error, it is recorded but no message is shown. This
mechanism prevents you from being overwhelmed by millions of duplicate errors.

194 System Analysis and Tuning Guide

The —v option will add a summary of all reports (sorted by their total count) to the
end of the Valgrind's execution output. Moreover, Valgrind stops collecting errors
if it detects either 1000 different errors, or 10 000 000 errors in total. If you want to
suppress this limit and wish to see all error messages, use ——error—-limit=no.

Some errors usually cause other ones. Therefore, fix errors in the same order as they
appear and re-check the program continuously.

17.4 For More Information

* For a complete list of options related to the described tracing tools, see the
corresponding man page (man 1 strace,man 1 ltrace,andman 1
valgrind).

* To describe advanced usage of Valgrind is beyond the scope of this document.
It is very well documented, see Valgrind User Manual [http://valgrind
.org/docs/manual/manual .html]. These pages are indispensable
if you need more advanced information on Valgrind or the usage and purpose of its
standard tools.

Tracing Tools 195

http://valgrind.org/docs/manual/manual.html
http://valgrind.org/docs/manual/manual.html

Kexec and Kdump

Kexec is a tool to boot to another kernel from the currently running one. You can
perform faster system reboots without any hardware initialization. You can also
prepare the system to boot to another kernel if the system crashes.

18.1 Introduction

With Kexec, you can replace the running kernel with another without a hard reboot.
The tool is useful for several reasons:

Faster system rebooting

If, for any reasons, you have to reboot the system frequently, Kexec can save you
significant time.

Avoiding unreliable firmware and hardware

Nowadays, computer hardware is complex and serious problems may occur during
the system start-up. You cannot always replace unreliable hardware immediately.
Kexec boots the kernel to a controlled environment with the hardware already
initialized. The risk of unsuccessful system start is minimized.

Saving the dump of a crashed kernel

Kexec preserves the contents of the physical memory. After the production kernel
fails, the capture kernel, which runs in a reserved memory, saves the state of the
failed kernel. The saved image can help you with the subsequent analysis.

Kexec and Kdump 197

* Booting without GRUB or LILO configuration

When the system boots a kernel with Kexec, it skips the boot loader stage. Normal
booting procedure can fail due to an error in the boot loader configuration. With
Kexec, you do not depend on a working boot loader configuration.

18.2 Required Packages

If you aim to use Kexec on openSUSE® to speed up reboots or avoid potential
hardware problems, you need to install the kexec—-tools package.

The package kexec—tools contains a script called kexec-bootloader. It
reads the boot loader configuration and runs Kexec with the same kernel options
as the normal boot loader does. kexec—-bootloader -h gives you the list of
possible options.

To set up an environment that helps you obtain useful debug information in case of a
kernel crash, you need to install makedumpfile in addition.

The preferred method to use Kdump in the SUSE environment is through the
YaST Kdump module. Install the package yast2-kdump by entering zypper
install yast2-kdump in the command line as root.

18.3 Kexec Internals

The most important component of Kexec is the /sbin/kexec command. You
can load a kernel with Kexec in two different ways:

* Withkexec -1 kernel_image to load the kernel to the address space of a
production kernel for regular reboot. You can later boot to this kernel with kexec
-e.

* With kexec —-p kernel_image to load the kernel to a reserved area of
memory. This kernel will be booted automatically when the system crashes.

If you want to boot another kernel and preserve the data of the production kernel
when the system crashes, you need to reserve a dedicated area of the system
memory. The production kernel never loads to this area because it must be available
at all times. It is used for the capture kernel so that the memory pages of the

198 System Analysis and Tuning Guide

production kernel can be preserved. You reserve the area with crashkernel =
size@ofrfset as acommand line parameter of the production kernel. Note that
this is not a parameter of the capture kernel. The capture kernel does not use Kexec
at all.

The capture kernel is loaded to the reserved area and waits for the kernel to crash.
Then Kdump tries to invoke the capture kernel in the most simple way because the
production kernel is no longer reliable at this stage. This means that even Kdump can
fail.

To load the capture kernel, you need to include the kernel boot parameters. Usually,
the initial RAM file system is used for booting. You can specify it with ——initrd
= filename. With ——append = cmdline, you append options to the command
line of the kernel to boot. It is helpful to include the command line of the production
kernel if these options are necessary for the kernel to boot. You can simply copy

the command line with ——append = "$ (cat /proc/cmdline) " or add more
options with ——append = "$ (cat /proc/cmdline) more_options".

You can always unload the previously loaded kernel. To unload a kernel that was
loaded with the —1 option, use the kexec —u command. To unload a crash kernel
loaded with the —p option, use kexec -p —-u command.

18.4 Basic Kexec Usage

To verify if your Kexec environment works properly, follow these steps:

1 Make sure no users are currently logged in and no important services are running
on the system.

2 Loginas root.
3 Switch to runlevel 1 with telinit 1

4 Load the new kernel to the address space of the production kernel with the
following command:

kexec -1 /boot/vmlinuz —--append="S (cat /proc/cmdline)"”
——initrd=/boot/initrd

5 Unmount all mounted file systems except the root file system with umount -a

Kexec and Kdump 199

IMPORTANT: Unmounting Root Filesystem

Unmounting all file systems will most likely produce a device is busy
warning message. The root file system cannot be unmounted if the
system is running. Ignore the warning.

6 Remount the root file system in read-only mode:
mount -o remount,ro /

7 Initiate the reboot of the kernel that you loaded in Step 4 (page 199) with
kexec -e

It is important to unmount the previously mounted disk volumes in read-write mode.
The reboot syscall acts immediately upon calling. Hard drive volumes mounted in
read-write mode neither synchronize nor unmount automatically. The new kernel
may find them “dirty”. Read-only disk volumes and virtual file systems do not need
to be unmounted. Refer to /etc/mtab to determine which file systems you need
to unmount.

The new kernel previously loaded to the address space of the older kernel rewrites
it and takes control immediately. It displays the usual start-up messages. When the
new kernel boots, it skips all hardware and firmware checks. Make sure no warning
messages appear. All the file systems are supposed to be clean if they had been
unmounted.

18.5 How to Configure Kexec for
Routine Reboots

Kexec is often used for frequent reboots. For example, if it takes a long time to run
through the hardware detection routines or if the start-up is not reliable.

NOTE: Rebooting with Kexec
In previous versions of openSUSE®, you had to manually edit the

configuration file /etc/sysconfig/shutdown and the init script /
etc/init.d/halt to use Kexec to reboot the system. You no longer

200 System Analysis and Tuning Guide

need to edit any system files, since version 11 is already configured for
Kexec reboots.

Note that firmware as well as the boot loader are not used when the system reboots
with Kexec. Any changes you make to the boot loader configuration will be ignored
until the computer performs a hard reboot.

18.6 Basic Kdump Configuration

You can use Kdump to save kernel dumps. If the kernel crashes, it is useful to copy
the memory image of the crashed environment on the file system. You can then
debug the dump file to find the cause of the kernel crash. This is called “core dump” .

Kdump works similar to Kexec (seeChapter 18, Kexec and Kdump (page 197)).

The capture kernel is executed after the running production kernel crashes. The
difference is that Kexec replaces the production kernel with the capture kernel. With
Kdump, you still have access to the memory space of the crashed production kernel.
You can save the memory snapshot of the crashed kernel in the environment of the
Kdump kernel.

You can either configure Kdump manually or with YaST.

18.6.1 Manual Kdump Configuration

Kdump reads its configuration from the /etc/sysconfig/kdump file. To
make sure that Kdump works on your system, its default configuration is sufficient.
To use Kdump with the default settings,follow these steps:

1 Append the following kernel command line option to your boot loader
configuration, and reboot the system:

crashkernel=sizel@offset

You can find the corresponding values for size and of fset in the following
table:

Kexec and Kdump 201

Table 18.1 Recommended Values for Additional Kernel Command Line

Parameters
Architecture Recommended value
1386 and x86-64 crashkernel=64M @ 16M
1A64 crashkernel=256M (small systems) or
crashkernel=512M (larger systems)
ppc64 crashkernel=128M or

crashkernel=256M (larger systems)

2 Enable Kdump init script:
chkconfig boot.kdump on

3 You can edit the options in /etc/sysconfig/kdump . Reading the
comments will help you understand the meaning of individual options.

4 Execute the init script once with rckdump start, or reboot the system.
After configuring Kdump with the default values, check if it works as expected.

Make sure that no users are currently logged in and no important services are running
on your system. Then follow these steps:

1 Switch to runlevel 1 with telinit 1
2 Unmount all the disk file systems except the root file system with umount -a
3 Remount the root file system in read-only mode: mount -o remount, ro /

4 Invoke “kernel panic” with the procfs interface to Magic SysRq keys:

echo ¢ >/proc/sysrqg-trigger

IMPORTANT: The Size of Kernel Dumps

The KDUMP_KEEP_OLD_DUMPS option controls the number of preserved
kernel dumps (default is 5). Without compression, the size of the dump

202 System Analysis and Tuning Guide

can take up to the size of the physical RAM memory. Make sure you have
sufficient space on the /var partition.

The capture kernel boots and the crashed kernel memory snapshot is saved to the
file system. The save path is given by the KDUMP__SAVEDIR option and it defaults
to /var/crash .If KDUMP_IMMEDIATE_REBOOT is set to yes , the system
automatically reboots the production kernel. Log in and check that the dump has
been created under /var/crash .

WARNING: Screen Freezes in X11 Session

When Kdump takes control and you are logged in an X11 session, the
screen will freeze without any notice. Some Kdump activity can be still
visible (for example, deformed messages of a booting kernel on the
screen).

Do not reset the computer because Kdump always needs some time to
complete its task.

18.6.2 YaST Configuration

In order to configure Kdump with YaST, you need to install the yast2-kdump
package. Then either start the Kernel Kdump module in the System category of
Hentp ynpasnenus YaST, or enter yast2 kdump in the command line as root.

Kexec and Kdump 203

Figure 18.1 YaST2 Kdump Module - Start-Up Page
i YasT2 _ o x|

@ Kdump Start-Up

Dump Filtering
Durmnp Target Enable/Disahle Kdump
Email Notification @ Enable Kdump

Expert Settings Disable Kdump

Kdump Memory
Total System Memory [MB]. 360

Usable Memory [MB]. 828
Kdump Memory [MB]

64 H

In the Start-Up window, select Enable Kdump. The default value for Kdump memory
is sufficient on most systems.

Click Dump Filtering in the left pane, and check what pages to include in the dump.
You do not need to include the following memory content to be able to debug kernel
problems:

* Pages filled with zero
* Cache pages

» User data pages

» Free pages

In the Dump Target window, select the type of the dump target and the URL where
you want to save the dump. If you selected a network protocol, such as FTP or SSH,
you need to enter relevant access information as well.

Fill the Email Notification window information if you want Kdump to inform you
about its events via E-mail and confirm your changes with OK after fine tuning
Kdump in the Expert Settings window. Kdump is now configured.

204 System Analysis and Tuning Guide

18.7 Analyzing the Crash Dump

After you obtain the dump, it is time to analyze it. There are several options.

The original tool to analyze the dumps is GDB. You can even use it in the latest
environments, although it has several disadvantages and limitations:

* GDB was not specifically designed to debug kernel dumps.
* GDB does not support ELF64 binaries on 32-bit platforms.

* GDB does not understand other formats than ELF dumps (it cannot debug
compressed dumps).

That is why the crash utility was implemented. It analyzes crash dumps and debugs
the running system as well. It provides functionality specific to debugging the Linux
kernel and is much more suitable for advanced debugging.

If you want to debug the Linux kernel, you need to install its debugging information
package in addition. Check if the package is installed on your system with zypper
se kernel | grep debug.

IMPORTANT: Repository for Packages with Debugging Information

If you subscribed your system for online updates, you can find “debuginfo”
packages in the *-Debuginfo-Updates online installation repository
relevant for openSUSE 11.4. Use YaST to enable the repository.

To open the captured dump in crash on the machine that produced the dump, use a
command like this:

crash /boot/vmlinux-2.6.32.8-0.1-default.gz /var/
crash/2010-04-23-11\:17/vmcore

The first parameter represents the kernel image. The second parameter is the dump
file captured by Kdump. You can find this file under /var/crash by default.

18.7.1 Kernel Binary Formats

The Linux kernel comes in Executable and Linkable Format (ELF). This file is
usually called vmlinux and is directly generated in the compilation process. Not all

Kexec and Kdump 205

boot loaders, especially on x86 (1386 and x86_64) architecture, support ELF binaries.
The following solutions exist on different architectures supported by openSUSE®.

x86 (i386 and x86_64)

Mostly for historic reasons, the Linux kernel consists of two parts: the Linux kernel
itself (vm1inux) and the setup code run by the boot loader.

These two parts are linked together in a file called bz Image, which can be found in
the kernel source tree. The file is now called vimlinuz (note z vs. x) in the kernel
package.

The ELF image is never directly used on x86. Therefore, the main kernel package
contains the vm1linux file in compressed form called vmlinux.gz .

To sum it up, an x86 SUSE kernel package has two kernel files:
* vmlinuz which is executed by the boot loader.

* vmlinux.gz ,the compressed ELF image that is required by crash and GDB.

1A64

The e11ilo boot loader, which boots the Linux kernel on the IA64 architecture,
supports loading ELF images (even compressed ones) out of the box. The IA64
kernel package contains only one file called vm1l inuz. It is a compressed ELF
image. vmlinuz on IA64 is the same as vimlinux.gz on x86.

PPC and PPC64

The yaboot boot loader on PPC also supports loading ELF images, but not
compressed ones. In the PPC kernel package, there is an ELF Linux kernel file
vmlinux. Considering crash, this is the easiest architecture.

If you decide to analyze the dump on another machine, you must check both the
architecture of the computer and the files necessary for debugging.

You can analyze the dump on another computer only if it runs a Linux system of the
same architecture. To check the compatibility, use the command uname -1 on both
computers and compare the outputs.

206 System Analysis and Tuning Guide

If you are going to analyze the dump on another computer, you also need the
appropriate files from the kernel and kernel debug packages.

1 Put the kernel dump, the kernel image from /boot, and its associated debugging
info file from /usr/1lib/debug/boot into a single empty directory.

2 Additionally, copy the kernel modules from /1ib/modules/$ (uname
-r) /kernel/ and the associated debug info files from /usr/1ib/
debug/lib/modules/$ (uname -r)/kernel/ into a
subdirectory named modules.

3 In the directory with the dump, the kernel image, its debug info file, and the
modules subdirectory, launch the crash utility: crash vmlinux-version
vmcore.

NOTE: Support for Kernel Images

Compressed kernel images (gzip, not the bzlmage file) are supported
by SUSE packages of crash since openSUSE® 11. For older versions,
you have to extract the vmlinux.gz (x86) orthe vimlinuz (I1A64) to
vmlinux.

Regardless of the computer on which you analyze the dump, the crash utility will
produce an output similar to this:

tux@mercury:~> crash /boot/vmlinux-2.6.32.8-0.1-default.gz
/var/crash/2010-04-23-11\:17/vmcore

crash 4.0-7.6

Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008 Red Hat, Inc.
Copyright (C) 2004, 2005, 2006 1IBM Corporation

Copyright (C) 1999-2006 Hewlett-Packard Co

Copyright (C) 2005, 2006 Fujitsu Limited

Copyright (C) 2006, 2007 VA Linux Systems Japan K.K.

Copyright (C) 2005 NEC Corporation

Copyright (C) 1999, 2002, 2007 Silicon Graphics, Inc.

Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc.

This program is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under
certain conditions. Enter "help copying” to see the conditions.

This program has absolutely no warranty. Enter "help warranty" for details.

GNU gdb 6.1

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain
conditions.

Kexec and Kdump 207

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB.
This GDB was configured as

Type "show warranty" for details.

"x86_64-unknown-linux—-gnu"...

KERNEL: /boot/vmlinux-2.6.32.8-0.1-default.gz
DEBUGINFO: /usr/lib/debug/boot/vmlinux-2.6.32.8-0.1-default.debug
DUMPFILE: /var/crash/2009-04-23-11:17/vmcore
CPUS: 2
DATE: Thu Apr 23 13:17:01 2010
UPTIME: 00:10:41
LOAD AVERAGE: 0.01, 0.09, 0.09
TASKS: 42
NODENAME: eros
RELEASE: 2.6.32.8-0.1-default
VERSION: #1 SMP 2010-03-31 14:50:44 +0200
MACHINE: x86_64 (2999 Mhz)
MEMORY: 1 GB
PANIC: "SysRg Trigger a crashdump"
PID: 9446
COMMAND: "bash"
TASK: f££f£f£88003a57c3c0 [THREAD_INFO: f£f£f£f880037168000]
CPU: 1
STATE: TASK_RUNNING (SYSRQ)

crash>

The command output prints first useful data: There were 42 tasks running at the
moment of the kernel crash. The cause of the crash was a SysRq trigger invoked by
the task with PID 9446. It was a Bash process because the echo that has been used
is an internal command of the Bash shell.

The crash utility builds upon GDB and provides many useful additional commands.
If you enter bt without any parameters, the backtrace of the task running at the
moment of the crash is printed:

crash> bt

PID: 9446 TASK: ffff88003a57c3c0 CPU: 1 COMMAND: "bash"

#0 [ff£££880037169db0] crash_kexec at ffffffff80268fdé6

#1 [f£££880037169e80] __ _handle_sysrqg at ffffffff803d50ed

#2 [£f££f£880037169ecO0] write_sysrqg_trigger at ffffffff802f6fcH

#3 [f£££880037169ed0] proc_reg_write at ffffffff802£f068b

#4 [£f££f£880037169f10] vfs_write at ffffffff802blaba

#5 [£f££f£f880037169f40] sys_write at ffffffff802blclf

#6 [ff£f£880037169f80] system_call_ fastpath at ffffffff8020bfbb
RIP: 00007£fa958991f60 RSP: 00007ff£f61330390 RFLAGS: 00010246
RAX: 0000000000000001 RBX: ffffffff8020bfbb RCX: 0000000000000001
RDX: 0000000000000002 RSI: 00007£fa959284000 RDI: 0000000000000001
RBP: 0000000000000002 R8: 00007£a9592516£0 R9: 00007£a958c209c0
R10: 00007£fa958c209c0 R11: 0000000000000246 R12: 00007fa958c1£780
R13: 00007£a959284000 R14: 0000000000000002 R15: 00000000595569d0
ORIG_RAX: 0000000000000001 CS: 0033 SS: 002b

208 System Analysis and Tuning Guide

crash>

Now it is clear what happened: The internal echo command of Bash shell sent

a character to /proc/sysrg-trigger . After the corresponding handler
recognized this character, it invoked the crash_kexec () function. This function
called panic () and Kdump saved a dump.

In addition to the basic GDB commands and the extended version of bt, the crash
utility defines many other commands related to the structure of the Linux kernel.
These commands understand the internal data structures of the Linux kernel and
present their contents in a human readable format. For example, you can list the
tasks running at the moment of the crash with ps. With sym, you can list all the
kernel symbols with the corresponding addresses, or inquire an individual symbol
for its value. With £iles, you can display all the open file descriptors of a process.
With kmem, you can display details about the kernel memory usage. With vm, you
can inspect the virtual memory of a process, even at the level of individual page
mappings. The list of useful commands is very long and many of these accept a wide
range of options.

The commands that we mentioned reflect the functionality of the common Linux
commands, such as ps and 1sof. If you would like to find out the exact sequence
of events with the debugger, you need to know how to use GDB and to have strong
debugging skills. Both of these are out of the scope of this document. In addition,
you need to understand the Linux kernel. Several useful reference information
sources are given at the end of this document.

18.8 Advanced Kdump
Configuration

The configuration for Kdump is stored in /etc/sysconfig/kdump . You

can also use YaST to configure it. Kdump configuration options are available under
System > Kernel Kdump in Uentp ynpasnenus: YaST. The following Kdump options
may be useful for you:

You can change the directory for the kernel dumps with the KDUMP_SAVEDIR
option. Keep in mind that the size of kernel dumps can be very large. Kdump
will refuse to save the dump if the free disk space, subtracted by the estimated
dump size, drops below the value specified by the KDUMP_FREE_DISK_SIZE

Kexec and Kdump 209

option. Note that KDUMP_SAVEDIR understands URL format protocol://
specification, where protocolisoneof file, ftp, sftp, nfsor
cifs, and specification varies for each protocol. For example, to save
kernel dump on an FTP server, use the following URL as a template: ftp://
username:password@ftp.example.com:123/var/crash.

Kernel dumps are usually huge and contain many pages that are not necessary for
analysis. With KDUMP_DUMP LEVEL option, you can omit such pages. The option
understands numeric value between 0 and 31. If you specify 0, the dump size will be
largest. If you specify 31, it will produce the smallest dump. For a complete table of
possible values, see the manual page of kdump (man 7 kdump).

Sometimes it is very useful to make the size of the kernel dump smaller.

For example, if you want to transfer the dump over the network, or if you

need to save some disk space in the dump directory. This can be done with
KDUMP_DUMPFORMAT set to compressed. The crash utility supports dynamic
uncompression of the compressed dumps.

IMPORTANT: Changes to Kdump Configuration File

You always need to execute rckdump restart after you make manual
changes to /etc/sysconfig/kdump . Otherwise these changes will
take effect next time you reboot the system.

18.9 For More Information

Since there is no single comprehensive reference to Kexec and Kdump usage, you
have to explore several resources to get the information you need. Here are some of
them:

» For the Kexec utility usage, see the manual page of Kexec.

* You can find general information about Kexec at http://www.ibm.com/
developerworks/linux/library/l-kexec.html . Might be
slightly outdated.

* For more details on Kdump specific to SUSE Linux, see http://ftp.suse

.com/pub/people/tiwai/kdump-training/kdump-
training.pdf

210 System Analysis and Tuning Guide

http://www.ibm.com/developerworks/linux/library/l-kexec.html
http://www.ibm.com/developerworks/linux/library/l-kexec.html
http://ftp.suse.com/pub/people/tiwai/kdump-training/kdump-training.pdf
http://ftp.suse.com/pub/people/tiwai/kdump-training/kdump-training.pdf
http://ftp.suse.com/pub/people/tiwai/kdump-training/kdump-training.pdf

* An in-depth description of Kdump internals can be found at http://1lse
.sourceforge.net/kdump/documentation/ols2005-
kdump-paper.pdf

For more details on crash dump analysis and debugging tools, use the following
resources:

* Very useful information about kernel dump debugging with crash can be found
athttp://en.opensuse.org/Crashdump_Debugging

* In addition to the info page of GDB (info gdb), you might want to
read the printable guides at http://sourceware.org/gdb/
documentation/

* A white paper with a comprehensive description of the crash utility usage can
be found at http://people.redhat.com/anderson/crash
_whitepaper/

* The crash utility also features a comprehensive online help. Just write help
command to display the online help for command.

 If you have the necessary Perl skills, you can use Alicia to make the debugging
easier. This Perl-based front end to the crash utility can be found at http://
alicia.sourceforge.net/

* If you prefer Python instead, you may want to install Pykdump. This package
helps you control GDB through Python scripts and can be downloaded from
http://sf.net/projects/pykdump

* A very comprehensive overview of the Linux kernel internals is given in
Understanding the Linux Kernel by Daniel P. Bovet and Marco Cesati (ISBN
978-0-596-00565-8).

Kexec and Kdump 211

http://lse.sourceforge.net/kdump/documentation/ols2oo5-kdump-paper.pdf
http://lse.sourceforge.net/kdump/documentation/ols2oo5-kdump-paper.pdf
http://lse.sourceforge.net/kdump/documentation/ols2oo5-kdump-paper.pdf
http://en.opensuse.org/Crashdump_Debugging
http://sourceware.org/gdb/documentation/
http://sourceware.org/gdb/documentation/
http://people.redhat.com/anderson/crash_whitepaper/
http://people.redhat.com/anderson/crash_whitepaper/
http://alicia.sourceforge.net/
http://alicia.sourceforge.net/
http://sf.net/projects/pykdump

JNTnueH3num GNU

3ro npuioxeHue cogepxutr GNU General Public License Bepcuu 2 u GNU Free
Documentation License Bepcuu 1.2.

VauBepcaiabHass OomecrBennas Jlumen3usst GNU (GNU General Public
License)

Bepcus 2, mions 1991 1.
Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
(C) Mepesoa. O.B. Kysuna, B.M. I0da, 1993 (C) IMepesoa. O.C. TuxoHos, 1998

STOT OKYMEHT MOKHO KOIHMPOBATh, & TAKKE PACIPOCTPAHSITH €ro J0CIOBHbIE KOIHIH, OIHAKO BHOCUTD B HETO N3MEHEHHSI 3aIPEIIEeHO.

Ipeamoyaa

JInuensum Ha GOJIbINYIO0 YacTh NPOrpaMMHOro odecrnedenus (I10) cocTapieHbl TaK, YTOObI JIMIIMTH BaC CBOOOIbI COBMECTHO MCIIONB30BATh M M3MEHAThH
ero. B mpoTHBOMOJIOKHOCTB 3TOMY, NIpe/iHa3HayeHKe YHuBepcanbHoii O6mectBenHoi JInnensun GNU cocTouT B TOM, 4TOOB FapaHTHPOBATH Ballly
cB0GO/Ty COBMECTHO MCIIO/b30BaTh M M3MeHATh cBobosHoe 10, T.e. obecneunTts cBoGomy 1O s Beex ero momb3oBatesneid. JlaHHas Y HUBepcabHas
OGmecTBeHHas JIneH3usa npuMennMa K 6onbineii yacti IO ®onaa CeobomHoro ITO 1 Ko BceM APYrHM NPOrpaMMam, bM aBTOPHI IPUHAMAIOT Ha
cebs1 0043aTeNbCTBO ee UCNOoNb30BaTh. ([HekoTophiX mporpamm Porma Ceodoanoro IO BMecTo Hee IpUMeHsAeTcs Y HuBepcaibHas OGecTBeHHas
JInuensusa GNU ans 6u6amotek.) Bol Toke MOKeTe IPUMEHHUTH €€ K CBOMM NPOrpaMMaM.

Korza met roBopum o cBodoasoM I1O, MBI iMeeM B By CBOOOJLY, a He OecrutaTHOCTb. Hatm YHusepcanbhbie OdimecTsentbie JINeH3nmn
Pa3pabaThIBATICh VIS TOTO, YTOOBI TAPAHTHPOBATH, YTO BhI MOJIB3YETECh CBOOOOM PACIPOCTPAHSTh KoMK cBoOoaHOro 10 (1 npH kenaHun
TOJTy4aTh 3a TO BO3HATPAKACHHE); UTO BBI M0Jy4aeTe NCXOAHBIN KO/ MM MOKETE MOMYUHTh €r0, €CIIM 3aXOTHTE; YTO Bbl MOKeTe n3MeHsTh 10 wm
HCTIOJB30BATh €TO YaCTH B HOBBIX CBOOOHBIX MPOrPAMMAX; 1 UTO BbI 3HaeTe 000 BCEX STHX MPaBax.

YroGbl 3aLUTHTb BALK IIPaBa, HAM HYKHO BBECTH HEKOTOPBIE OrPAaHNUEHHsI, KOTOPIE 3aIPETST KOMY Obl TO HH OBLIO OTKA3bIBATH BAM B 9THX [IPABaX
WM NIOTPeOOBATH OT BAC OTKA3aThCs OT STHX IPaB. T OrPaHMYEHUsI HAKJIAJBIBAIOT HA BAC HEKOTOPbIE 00SI3aTE/ILCTBA, €CIIN Bbl PACIIPOCTPaHsIeTe
konmu I10 wm u3mensiere ero.

Hanpumep, ecii Bbl pacipocTpaHsieTe KOIMK TaKOi POrpamMMBbl OECILIATHO WM 32 BO3HAIPaKEHHE, BbI JOJUKHBI IIPEOCTABUTD [OJIy4aTelIsIM BCe
paBa, KOTOPLIMU 00JIaJjaeTe Bbl caMK. Bbl 10JIKHBI FapaHTUPOBATH, YTO OHH TOXKE MOJIy4aT WM CMOTYT HOJIYYMTh HCXOAHBIN Ko, HakoHew, Bbl
JIOJIKHBI [IOKA3aTh UM TEKCT JAHHBIX YCJIOBUIA, YTOOBI OHY 3HAJIU O CBOUX IIpaBaXx.

MBeI 3ampimaeM Baiy 1pasa B iBa dtama: (1) coxpansiem aBropckue npasa Ha 10 u (2) npeiaraeM BaM 3Ty JIMLEH3UIO, KOTOPAs JaeT BaM 3aKOHHOE
MpaBoO KOMUPOBATh, PACIIPOCTPAHATH W/iiii Moguduimpoats I10.

Kpome Toro, B Le/IAX 3alMTHl KaK KakI0T0 aBTOPa, TaK M HAC, MBI XOTMM YIOCTOBEPHTBCSA, YTO KAk /Iblii TOHMMAET, YTO FapaHTHii Ha 3TO CBOGOIHOE
TIO wer. Ecii T1O mommdunmpyetcs u nepejaetcs KeM-To ellie, Mbl XOTUM, 4ToGbl norydaresu ITO 3Hamm, 4To To, 4TO Y HUX €CTh, — 3TO He
OPHUTHHAJ, YTOOHI JIOOBIE MPOGIEMBI, CO3/IaHHbIE IPYTMMH, HE OTPA3HIINCh Ha PEryTalliy NepBOHAYATBbHBIX aBTOPOB.

W HakoHell, Kax10i CBOOOIHOI MpOrpamMme MOCTOSAHHO YrPoKalT naTeHThl Ha ITO. Mbl X0THM H30e:KaTh TOi ONACHOCTH, 4TO MOBTOPHbIE
PacnpoCTPaHUTENIN CBOOOIHOM MPOrpaMMbl CAMOCTOATEILHO MOJTyyaT TATEHThI, eNas MPOrpaMMy TAKMM 00pa30M YacTHOH COOCTBEHHOCTBIO.
YT0oGBI MPEIOTBPATHTH 3TO, MBI CO BCEl ONIPE/IESIEHHOCTBIO 3asIBIIAEM, UTO JIOOOH MATEHT JOJIKEH ObITh 100 MPeIoCTaBlIeH BCeM LT CBOOOIHOTO
MCTIONB30BaHNsA, JIMOO He NPeJIoCTaBjIeH HUKOMY.

Huke criefyloT TOUHbIE ONpe/Ie/IeHNs U YCIIOBUS JUIs KOMMPOBAHUS, PACIIPOCTPAHEHHS 1 MOAMDUKALIIH.

OITIPEJEJIEHHWSA 1 YCJIOBUA AJI KOITMPOBAHNSA, PACITPOCTPAHEHUA 1 MOJJUPUKAIIMN

0. Sra JlnueHsus npuvMeHrMa K moGoi MporpamMmme Wi APyromy TpoM3BE/ICHHIO, CONepKaleMy YBeJOMICHNE, TOMEIICHHOE JiepiKaTesieM aBTOPCKUX
TIPaB U COOOIIAIOIIEE O TOM, YTO OHO MOKET PACIIPOCTPAHSTHCS NP YCIOBHSIX, OTOBOPEHHBIX B JaHHOI YHuBepcabHON O0mecTBeHHO# JInteHs3nn.
B nanpneitiem Tepmun “TIporpaMma” 0THOCHTCS K JIIOOO# TaKO# MPOrpamMme Milv MPOU3BE/ICHHIO, & TEPMUH “TIPOM3BE/ICHHE, OCHOBAHHOE Ha
Iporpamme” o3Hauaet IporpamMmy nm moGoe npoussesieHue, cofepxkaiee [porpaMMy WM ee YacTb, 10CTOBHYIO, WM MOAM(UIIMPOBAHHYIO, H/UITH
TiepeBe/IeHHYI0 Ha JIpyroit si3biK. (371eck ¥ 1aee NepeBo/l BKIoYaeTcsa 6e3 OrpaHueHuil B oHATHe “Moandukarms”.) Kaxpiii 00/1a1aTens IMIeH3umn
ajpecyercst Kak “Bbl”.

Bupl 1esITeIbHOCTH, He sIBJISIIONIHECS KOIupc PacIpocCTy wiu Moaud i, He OXBATHIBAIOTCS IaHHOW JIUIeH3Mel; OHM JiekaT
3a Ipe/ieJlaMy €€ BIIMAHUA. HUcnonb3oBanue HpOl‘paMMbI 1o ee LbyHKHHOHaJ'IbHOMy Ha3HAYEHMIO HE OrPAaHUYEHO, A BBIXOHBIE JaHHbIE HpOrpaMMbI
OXBAaTBIBAIOTCs 9TOW JIUIIEH3UEH, TOJIbKO eCIIM X COAECpKAHUE ABJISAECTCA MTPOU3BEJAECHUEM, OCHOBAHHBIM Ha Hporpamme (BHe 3aBUCUMOCTH OT TOTO,
OBUIM JIX OHI TIOJTyY€HBI B IPOLIECCE UCTIONIBb30BAHUA HpOl‘paMMbI)A SIBJISIOTCS JIM OHU TAKOBBIMHU, 3aBHCUT OT TOTO, YTO UMEHHO JeJIaeT HporpaMMa.

1. Brl MOXkeTe KOMMpPOBATh M PAaCPOCTPAHATh JIOCTOBHBIC KOMMH HCXOTHOTO Kojia [TporpaMMEI 1o ero MoyueHHH Ha II000M HOCHTENe, Y YCTOBHH

YTO BBl COOTBETCTBYIOIIMM 0OPa30M MOMEIIAETE HA BHIHOM MECTE B KaXJI0H KOIHMM COOTBETCTBYIOMIEE yBEIOMIIEHHE 00 aBTOPCKHX TpaBax M OTKa3 OT
TIPE/IOCTABIICHN s TAPAHTHIA; OCTABJIIETe HETPOHYTEIMHU BCE YBEJIOMJICHHS, OTHOCAIIMECS K IAHHOH JIMIIEH3MH U K OTCYTCTBHIO KAKMX-JTMOO rapaHTHii; u
TiepesiaeTe BCeM IPYTuM nostydatesisam IporpamMmer Komiio AanHo# JInmensuu Bmecte ¢ ITporpamMmoii.

Bol Mo:KkeTe Ha3HAUMTD IUIATY 32 (PU3MUECKMIT aKT Nepeayy KoMUY M MOXETe [0 CBOEMY YCMOTPEHHIO IIPEIOCTaBIIATh IAPAHTHH 32 BO3HAI DAKIEHHE.

2. Bbl MOKETE H3MEHSATh CBOIO KOMHIO HilM Koruy TTporpamMMel Wim JiioGoii ee 4acTH, Co3/1aBasi TAKMM 00pa3oM MPOM3BEeHHe, OCHOBAHHOE Ha
IIporpamme, 1 KOMMPOBaTh ¥ PACHPOCTPAHATH ITH MOAMMHUKALIMYI WM TPOM3BE/ICHHE B COOTBETCTBMM ¢ Pa3aesoM 1, mpHUBEIGHHBIM BHILIIE, IPH
YCJIOBUM, YTO BBl BBITIOJIHUTE BCE HHKECICAYIOIINE YCIOBUS:

a) Bol 00s13aHb! CHAGUTH MOAMDULMPOBAHHbIE (Daiijibl 3aMETHBIMH YBEAOMIICHHUSIMHU, COAEPKALMMY YKA3aHUS HA TO, YTO Bbl U3MEHWIN (ailiibl, 1
J1aTy Kax/J10ro U3BMEHEHHUS.

b) Ber 00s13aHBI TIPEIOCTABATH BCEM TPETHUM JIMIIAM JIMICH3UIO Ha OeCIUTaTHOE MCIIOB30BaHNe Kak0r0 MPOU3BEJICHUA, KOTOPOE Bbl
PACTIPOCTpaHsIeTe M MyOIMKyeTe, IEIMKOM, K KOTOPOE TOTHOCTBIO WITH YaCTHYHO CoAepkuT IIporpaMMmy Ml Kakyio-JHOO ee 4acTh, Ha YCTOBHSX,
OrOBOPEHHBIX B ﬂaHHOﬁ HVH[BH3VWI.

¢) Ecim mopmduimpoBanHast mporpaMma 0ObIMHO YHTAET KOMAH/Ibl B MHTEPAKTHBHOM PEXUME padOThl, B JOJIKHBI CAENATH TaK, YTOObI IPU

3alycke 1is paémm B TAKOM UHTEPAKTUBHOM pEKUME Oébl‘{HblM Ui HEe Croco0OM OHa NevaTalia uin BbIBO/IWJIA HA 9KPAaH Oé'b}lli.'lel'll/le, coaepxariee
COOTBETCTBYIOLIEE YBEIOMJIEHUE 06 ABTOPCKMX IpaBax v yBEJIOMJIEHUE O TOM, YTO l'apau'mﬁ HEeT (MJHA, Ha06op0'r, COO(’)LI.lalOI.Llee 0 TOM, 4TO Bbl
oéecuequﬁae're lapaH'mm), M 4TO MOJIb30BATE/IM MOI'YT IIOBTOPHO PAacClpOCTPAHATH IIPOrpaMMy [IpU 3TUX YCJIOBUAX, U YKa3bIBAIOLIEE M10J1b30BATEINIO,
Kak 1pocMoTpeth Koruio JanHoi Jiuuensun. (Mckimodenue: eciu cama [IporpaMma paGoTaeT B HHTEPAKTUBHOM PEKUME, HO OOBIMHO He BHIBOJUT
MOOOHBIX COOOLIEHHI, TO Ballle IPOU3BE/IeHIe, OCHOBaHHOE Ha [IporpamMme, He 0053aHO BBIBOJUTH OObSBIEHHE.)

ITH TpeOOBaHMs MPUMEHSIOTCS K MOAH(HIIMPOBAHHOMY MPOM3BEJCHHIO B 11eIoM. ECITH N3BECTHBIE YaCTH 3TOr0O NMPOM3BEACHNMS He OBLTH OCHOBAHBI
Ha [TporpaMMe 1 MOTYT OOOCHOBAHHO CUMTATHCS HE3ABUCHMBIMHU M CAMOCTOSITEIIbHBIMU TIPOM3BEICHUSIMH, TO 9Ta JIMIIEH3NUS 1 ee YCIIOBUS He
PacipoCTPaHSAIOTCSA Ha 3TU YACTH, €CIIM BBl PACTIPOCTpaHsAeTe X KaK OT/e/abHble npoussesieHus. Ho eci BB pacnipocTpaHseTe 3T 4acTH KaK yacTh
1EJIOr0 MPOM3BEJCHNS, OCHOBaHHOTO Ha ITporpaMme, TO Bbl 00SI3aHbI IE/IaTh 9TO B COOTBETCTBUM C yCIOBHSMH JaHHON JIMIIEH3HH, PaCTpOCTpaHss
TipaBa nonyqa'reneﬁ JIMIICH3UH Ha BCE MPOU3BE/ICHUE U, TAKUM 06p330M, Ha KaKJ1yI0 4aCTh, BHE 3aBUCUMOCTH OT TOTO, KTO €€ Hamucas.

Takum 06pa3oM, cojilepikaHue STOro pa3jielia He UMeeT LIeJIM NPETEeHI0BaTh Ha BALLK IIPaBa Ha IIPOU3BE/IEHNE, HATUCAHHOE MOJIHOCTBIO BAMM, MK
OCIapUBaTh UX; LEJb CKOPee B TOM, YTOObI peaii30BaTh PABO YIPABISATH PACIPOCTPAHEHUEM [IPOM3BOIHBIX MM KOJUIEKTUBHBIX IPOM3BEICHUH,
ocHoBaHHbIX Ha ITporpamme.

Kpome Toro, mpocToe HaxoskAeHHe APYroro MPON3BEICHNs, He OCHOBAHHOTO Ha 3Toit ITporpamme, coBMecTHO ¢ ITporpamMmoii (Ml ¢ POM3BEICHIEM,
OCHOBAHHEIM Ha 3T0i [IporpamMme) Ha OHOM HOCHTEJIE /s TIOCTOSIHHOTO XPAHEHNUSI M PACTIPOCTPAHSIEMOM HOCHTEJIe He PaCTIPOCTPAHSIET JeHCTBHE
970i1 JIMIEH3MH Ha JPyroe MpOM3Be/IeHNe.

3. Bbl MOkeTe KOIMpPOBaTh U pacrpocTpansth [Iporpammy (11m npousBeeHue, OCHOBaHHOE Ha Heil) cornacHo Paszeny 2) B 00beKTHOM Koje
WK B BBIIIOJIHUMOM BHU/IE B COOTBETCTBUM C Pa’menaMu lu 2, TIPUBEJICHHBIMH BBILLIE, [IPY YCIIOBUM, YTO Bbl TAKKE BBIIIOJIHUTE OJIHO U3 CIEAYIOLINX
TpeOOBaHUIL:

a) CompoBojuTe ee MONHBIM COOTBETCTBYIONIMM MAIIMHOYUTAEMBIM HCXOJHBIM KOJOM, KOTOPBIi I0JIKEH PaclipOCTPaHATHCS B COOTBETCTBHH C
Pasnenamu 1 1 2, IpUBE/ICHHBIMH BbIlle, HA HOCUTEJIE, KOTOPBIii OOBIYHO MCTIONb3yeTcs M ooMeHa I10; nm,

b) ConpoBoauTe ee NUCbMEHHBIM MPEUIOKEHUEM, ASHCTBUTEIIBHBIM 110 KpaiiHell Mepe B TeUeHHe TPEX JIET, IIPEAOCTABUTD JII000MY TPETbeMy JIULLY
3a BO3HArpax)/I€HUE, HE MPEBBIIAIONIEE CTOUMOCTh (bmw:ecxoro AKTa U3rOTOBJICHUS KOIUH, MOJIHYI0 MAIIMHOYUTAEMYIO KOITUIO COOTBETCTBYIOLETO
HCXOJJHOTO KOJIa, HOJICKALLYIO PACIIPOCTPAHEHHUIO B COOTBETCTBUM ¢ Pasaenamu 1 u 2, npuBeIeHHBIME BBILIE; HIIH

¢) ConpososmTe ee MHpOpPMAIMEH, MOTyYeHHOI BaMH B KauecTBe NPe/IOKEH)s PACIPOCTPAaHHTh COOTBETCTBYIONIMI HCXO/HBII KO (DTa
BO3MO’KHOCTB JIONTYCTHMA TOJBKO 1Tl HSKOMMEPYECKOT0 PACTIPOCTPAHEHN S, ¥ TOJILKO €CIIM BbI MOJyYMJTH NPOrpaMMy B 0OBEKTHOM KOJIe MM B
HCTIOHAEMOM BHJIE C NIPE/IOKEHNEM B cOOTBETCTBUM ¢ ITyHKTOM b) BhIIIE.)

214 System Analysis and Tuning Guide

WcxomHblii KO JUtst TIPOU3BEJICHUA O3HAYACT €ro B/, HPBHHO‘ITV[TeﬂbHHﬁ JUTA BBIMIOJTHEHUA B HEM Mounquauui ,D,HH HCIIOJIHAEMOrO TTPOU3BEACHNUA
TIOJTHBIIT MCXO/IHBIIT KOJI O3HAYaeT BCe HCXO/IHbIE KOIbI IS BCEX Mouyneﬁ, KOTOPbIE OH COJIEPKHT, TITIOC JI00BIE CBSI3aHHBIE C TPOM3BEACHUEM Cl)aﬁf[bl
onpeaesieHusa MHTeprbeﬁca, TUTIOC CLIEHAPWUH, UCTIOJIb3YEMBIC JIUIA YIIPABIICHUSA KOMIWIALHEN 1 yCTaHOBKOﬂ HUCTIOJIHAEMOT O TIPOU3BEACHUA. OpHako,

B BHJIE 0COOOT0 MCKITIOYEHUS paCHpOCTpaHﬂeMHﬁ MCXOMIHBII KO He 00s13aH BKJIIOYATh TO, 4TO OOBIYHO TNPENOCTaBIACTCA (Kal(B 061>E!KTHLIX, TaK U

B UCXOJIHBIX KOHHX) C OCHOBHBIMH KOMITOHEHTaMH (KOMHI/UI}ITOP, AAPO U Tak Jnanee) onepauuom-loﬁ CHCTEMBI, T10]1 yIpaBJIeHHEM KOTOpOﬁ pa(’)oTaeT
HUCIIOJIHAEMOE MPOU3BE/ICHUE, 32 UCKIIIOYEHUEM CITy4asd, Korja caM KOMITOHEHT COMPOBOKAACT UCTIOIHAEMOE ITPOU3BEIACHUE.

Ecim pacnpocrpaneHnie UCIIONHAEMOTo MPOU3BEIEH s W OOBEKTHOIO KOJIA MPOUCXOIUT MyTEeM IIPEJOCTAB/ISHNU JOCTYIIA 11l KOIMPOBAHMUS C
0003HAYEHHOr0 MECTA, TO MPEIOCTABICHNE JOCTYIIA ISl KOIMPOBAHUsI HCXOAHOIO KOJIA C TOrO K& MECTa CUMTAETCS! PACIPOCTPAHEHHEM HCXOIHOIO
KOJIa, JIaKe €C/IM TPETbH JIMIA HE MPUHYKIAIOTCS K KOIMPOBAHUIO HCXOIHOTO KOJIA BMECTE C OOBEKTHBIM KOJOM.

4. Bbl He MOKeTe KONMPOBATh, H3MEHATh, TOBTOPHO JIMIIEH3UPOBATh, HIIM PACPOCTPaHATh [TporpaMMy HUKaKMM MHBIM CIIOCOOOM, KpOME ABHO
TIPe/lyCMOTPEHHBIX JaHHO# JInniensueit. JTobas NOmbITKa KONMPOBaTh, M3MEHATh WM PAaCHPOCTPaHATh IIporpaMMy KakuM-1100 APYrHM CIIOCOGOM
WIM ¢ M3MEHEHHO JIMIeH31eii HeMpaBOMEepHa M aBTOMATHYECKHU MPEKPAIaeT Balllu TPasa, JaHHbIe BaM 3Toi JInnensueil. OHAKO JTMLICH3MHU JTHII,
TIOJyYMBIIMX OT BaC KOTMM HJIM NPaBa COTJIACHO JaHHO# YHMBepcanbHOi ObmecTBeHHOM JIMIIEH31H, He MPEKpallaioT CBOEro ACHCTBHA, €CITH 3TH
JIUIA TIOJTHOCTBIO COOMIONAIT YCIIOBHA.

5. Bl He 00s13aHBI COITIAIIATBCS € 3T0H JIMIeH3neil, Tak KaK Bbl He NOANKUCHIBaIM ee. OHAKO, HUYTO, KpoMe TOH JIuLeH3uy, He JaeT Bam

[PaBO U3MEHSITh WM PACIIPOCTPAHSATH 3Ty IIporpaMmy 1y OCHOBAHHbIE HA HEW NPOU3BEJCHUSL. DTH JEICTBUS 3aMPEIEHb! 3aKOHOM, €CJIU Bbl HE
npUHUMaeTe K codsmoaeHuo a1y Jlnnensuio. A 3HauuT, U3MeHsisl WK pacrnpocrtpansis [Iporpammy (i npousseaeHue, ocHoBanHoe Ha ITporpamme),
BbI U3BSIBIISIETE CBOE COIUIACUE ¢ 9TOM JInLieH3ueit ¥ BceMu ee YCIOBUSIME O KOIMPOBAHUM, paclpocTpaHeHny wim Moaudukanmu [porpaMmer nim
OCHOBAHHBIX HA HEW POU3BEJCHUM.

6. Kasplii pa3s, Koria Bbl IOBTOPHO pacrpoctpatsiere IIporpavmy (i Tio6oe Npou3BeeH e, OCHOBaHHOE Ha IIporpaMme), mostydaress 9T0ro
TPOM3BE/CHHS ABTOMATHYECKH [OJTY4aeT OT [ePBOHAYAIBHOrO BbIIABIIETO TUIICH3HIO JIMIIA CBOIO JIMLCH3MIO HA KOMMPOBAHHE, PACIPOCTPAHEHHE HITH
MozuduKaimio IIporpaMmsl, 06cy#1aeMyio B STHX ONPEICICHNAX U YCIOBHAX. Bbl He MOkeTe HajlaraTh KaKMX-TMO0 JOMONHUTE/IbHBIX OrPAaHHYEHHi
Ha OCYIIECTBJICHHE NOJTyyaTesieM Npas, NPeoCTaBICHHbIX JAaHHBIM I0KYMEHTOM. BhI He HeceTe OTBETCTBEHHOCTH 3a COOMIOICHNE TPETHUMH JIMIIAMH
yenoBuii 310it JIneH3uu.

7. Ecim B pesyJibTate CyeGHOro pasoupareibersa, Wik OOBUHEHHs B HAPYILIEHNH TIATEHTa WK 110 JII000i ApYroii npuunke (He 00si3aTe/bHO
CBSI3aHHOI C llalellTaMVl), BaM HaBsA3aHbI YCJIIOBUS, [IPOTUBOpEYALIIAE uauuoﬁ Huuemuu (110 TIOCTAHOBJIEHUIO CY/1a, 110 COIVIAIEHUIO WU UHBIM
€rocoGoM), 310 He 0cBOOOKAaeT Bac oT codmoaenus Jluensun. Eciu Bbl He MOXKeTe 3aHUMAThCs PACIIPOCTPAHEHHEM TAK, YTOOB! OAHOBPEMEHHO
YIOBJIETBOPUTD TPEOOBAHUAM U 3TOM JINLeH3uu, ¥ BceM APYrUM TPeOOBAHUSAM, TO Bbl HE JI0JIKHBI 3aHMMAThLCS pacrpocTpanenieM IIporpaMmel.
Haupumep, €CJIM MATEHT HE MO3BOJIACT 6e3303meauuoe TIOBTOPHOE pacCIpoCTpaHEHUE l'[porpaMMm BCEM, KTO I1OJIyYWJI KOITUU OT BAC HEIMOCPEACTBEHHO
WM Yepe3 MOCPEAHUKOB, TO €IMHCTBEHHBIM Crocodom YAOBJNIETBOPUTH U MATEHTY, U 3TOi JInue11314u (’)yue'r BAlll [IOJIHBIN OTKA3 OT pacrpocTpaHeHus
TIporpammer.

Ecimmn kakasg-mb0 4acTh 9TOrO pasjiesia He UMeeT CHJIBI HIIM He MOKET ObITh UCTIOJHEHa MPH HEKOTOPBIX KOHKPETHBIX 00CTOSITEbCTBAX, TO
TIOApa3yMeBaeTCs, YTO UMEET CHJTY OCTajIbHasA 4acTh pas/iesia, a mpu Ipyrux 00CTOATENBCTBAX MMEET CHITy BECh Paznen.

Llesb 3T0rO pasjiesia — He MOOYAUTb BAC JEJIaTh 3asiBICHMs O HAPYLICHHUSIX NPAB HA MATEHT, MK 3asiBJISATh O APYTUX IPETEH3UsX HA [PABO
COOCTBEHHOCTH MJIM OCIIAPUBATh NPABHIILHOCTb NMOJ0OHBIX IIPETEH3MIA; eIMHCTBEHHAS 11eJIb TOT0 pa3Jie/ia — 3allUTa HEJOCTHOCTU CUCTEMBI
pacripocrpatetus cBodoHoro 10, koTopast peaiu3yeTcs HCIoJIb30BAHMEM OOIECTBEHHDIX JIMLEH31A. MHOrHe JIo/iM BHEC/IH IIePbIil BRI B
mpokuit ciektp I1O, pacnpocTpaHseMoro 1o Toil cucTeMe, MoJarasch Ha €e COrIaCOBaHHOE IIPUMEHEHHE; TONILKO aBTOPY NPUHA/IEKUT IPABO
peLaTh, XOUeT JI1 OH WM OHa pacrpocTpansTh I10 B 9T0i cucTeMe WM B KaKO#-To APYroil, ¥ nojiyyaTesib JULIEH3UH He MOKET BIMATh Ha NPUHATHE
9TOrO PeleHusl.

STOT paszien npeAHa3HayeH IS TOTO, YTOOH! TIATEILHO MPOSCHUT, YTO TONAraeTCs CISACTBMEM M3 OCTATBHOI YacTH AaHHOH JINIeH3HH.

8. Ecim pacnpoctpateHye u/uim npuMeHenue [IporpaMMbl orpaHideHo B psijie CTpaH JIM00 NaTeHTaMHu, JIM00 aBTOPCKMMH [IPaBaMU Ha UHTePGENChl,
[epBOHAYAJIBHBIN 00J1a/1aTelb aBTOPCKHUX [PaB, BbillycKawowuii [IporpamMmy ¢ 91oii JInueH3 e, MoxXeT 100aBUTh SBHOE OrpaHHYEHHE Ha
reorpauyeckoe pacrpocTpaHeHNe, HCKIIOUNB TAKME CTPAHBI, TAK YTO PACIPOCTPAHEHNE PA3PELIASTCs TOJILKO B TEX CTPAHaX, KOTOPbIe He ObLIH
HCKJIIOYeHbl. B aTOM ciy4ae JaHHas .Hl’ll.lel-l'}l/lﬂ BKJIIOYAET B 066}1 3TO OrpaHUYEHUE, KaK eClIn 61:1 OHO ObLIIO HATIUCAHO B TEKCTE }.laHHOﬁ HHLLSHSMI/L

9. ®ona CodomHoro IO MoxeT BpeMs OT BpeMeHH! ITyOIMKOBaTh MePECMOTPEHHBIE W/MIM HOBbIE BEPCHH Y HUBEpcaibHOI OOIIecTBeHHOM
JInuensun. Takye HOBbIE BEPCHH Oy/IyT CXOMIHBI 110 yXy C HACTOSAIIEH BepCHeid, HO MOTYT OT/INYAThCA B JIETANIAX, HATIPAB/ICHHBIX HA HOBBIE TIPOOJIEMBI
WM 06CTOATENBCTBA.

Kasknoii Bepcun npugaercst ormuuresbHblil Homep. Eciim B [Tporpamme ykasbiBaeTcsi, YTO K Hell OTHOCUTCS HEKOTOPBIA HOMEp BEpCHH JAHHON
JInuensuu u “modast nociieayiowas Bepeusi”, Bbl MOXKETe 110 BBIOOPY CIIE0BATh ONPEJEICHUAM U YCIOBUSM JIMOO JAHHOW BepCuH, JIMO0 000
rocieyiouei Bepcuu, onyomkosanHoil Pongom CeodoaHoro ITO. Eciu B [TporpamMme He yKa3aH HOMep BepCHH JaHHO# JIMIEH3UH, Bbl MOKETE
BBIOpATH J00YI0 BEPCHIO, KOraa-noo omyoimkoBannyio ®ongom Codoasoro I10.

10. Ecnu Bbl XOTHTE BCTPOMTH YacT ITporpamMmel B Apyrue CBOOOIHbIE POrPAMMBI C HHBIMU YCIIOBUSIMU PACHIPOCTPAHEHNUS], HATUIIIMTE aBTOPY C
pockOoit 0 paspemennn. s 1O, koTopoe oxpaHsiercst aBTopckumu npasamu Porna CeodoaHoro IO, Harmmute B Pony Codoatoro I1O; Mbi
MHOTZIA JIeTaéM TaKue MckmoueHns. Haie peinenue OyeT pyKOBOJCTBOBATHCS ABYMsI LIEISIMHU: COXPAHEHHMsT CBOOOHOTO CTATYCA BCEX MPONU3BOIHBIX
Hattero cBo6oHoro I10 1 coaeicTBIs COBMECTHOMY M MTOBTOPHOMY MCTOJIb30BaH#I0 [1O BoodIe.

HHUKAKHX FTAPAHTHH
11. TIOCKOJIBKY ITPOT'PAMMA TTPEJOCTABJISIETCS BECIJIATHO, HA TIPOTPAMMY HET TAPAHTHUI B TO MEPE,

KAKAA 10ITY CTUMA ITPUMEHMMBIM 3AKOHOM. 3A UCKJIIOYEHMEM TEX CIIYYAEB, KOI'TA OBPATHOE 3ASBJIEHO B
MMMCbMEHHOV ®OPME, JEPKATEJI ABTOPCKHUX [TPAB W/WJIN IPYTYE CTOPOHBI IOCTABJIAIOT [IPOTPAMMY “KAK

Nuuensnn GNU

215

OHA ECTb” BE3 KAKOTI'O-JIUBO BUJIA TAPAHTHI, BBIPAJKEHHBIX IBHO WJIN ITOIPA3YMEBAEMBIX, BKJTIOYAS, HO

HE OTPAHUYMBASCDH UMU, TIOJIPA3YMEBAEMBIE TAPAHTA KOMMEPYECKOMH [IEHHOCTH U ITPUTOJJHOCTH /IS
KOHKPETHOW LIEJIU. BECh PUCK B OTHOIIEHMY KAYECTBA U [TPOU3BOUTEIBHOCTH [TPOI'PAMMBI OCTAETCA [TPU
BAC. ECJI [IPOTPAMMA OKAJKETCS JEPEKTHOM, BbI [IPUHUMAETE HA CEBSI CTOMMOCTbD BCEI'O HEOBXOANMOI'O
OBCJIYKUBAHN A, BOCCTAHOBJIEHUA NJIU NCITPABJIEHUA.

12. HU B KOEM CJIYYAE, ECJIM HE TPEBYETCS COOTBETCTBYIOIUM 3AKOHOM, WJTN HE YCJIOBJIEHO B ITMCbMEHHOIN
POPME, HU OJIUH JEPXATEJIb ABTOPCKUX ITPAB U H OJIHO APYTOE JINIIO, KOTOPOE MOJKET U3MEHATH W/WJIA
TIOBTOPHO PACITPOCTPAHSATD ITPOI'PAMMY, KAK BbLJIO PA3PEIIEHO BBIIIE, HE OTBETCTBEHHBI ITEPE/I BAMU 3A VBBITKH,
BKJIIOYA JIIOBBIE OBIIME, CITELMAJIBHBIE, CJIYYAWHBIE WJIK ITOCJIEJOBABIIME YBBITKH, TPOUCTEKAIOIIVE U3
WCIOJIb30BAHKA MM HEBO3MOKHOCTH UCTIOJIb30BAHNA [TPOTPAMMBI (BKJIIOUYAS, HO HE OTPAHUYMBASACH ITOTEPEN
JAHHBIX, MJIN JTAHHBIMU, CTABIIMMM HEITPABUJIBHBIMMU, WJIN IIOTEPAMM, IOHECEHHBIMU 13-3A BAC UJIUM TPETbUX
JINLL, WA OTKA30M ITPOTPAMMBI PABOTATH COBMECTHO C JIIOBBIMU [PYTUMU [TPOTPAMMAMM), IAKE ECJIM TAKOM
JEPKATEJIb WJIN JIPYTOE JIMIO BbIJIM U3BEIEHBI O BO3BMOXHOCTHU TAKUX YBBITKOB.

KOHEIL] OTIPEJEJIEHHH U Y CJIOBHH

Kak npumMeHsATh 9TH yCJI0BHs K BAIIMM HOBBIM ITPOrpaMMam

Ecm BB pa3paGaThiBaeTe HOBYIO IPOrPaMMy 1 XOTHTE, YTOOBI OHA MPHHEC/A MAKCHMAIILHO BO3MOKHYIO MOJIb3y OOIIECTBY, JIy4IlIHii CIIOCOO HOCTHYb
3TOro — BKJIOYHATH ee B cBoOoHOe 10, KoTopoe KakIblii MOKET OBTOPHO PACcIIPOCTPAHATh M M3MEHSATh CONJIACHO IaHHBIM YCIIOBHAM.

YroGhl cenath 970, 100aBbTe B POrpamMmy clieylomue yenomienus. Hajnexnee Bcero Oyzer 106aBUTh MX B HAYAJIO KaKIOTO HCXONHOTO (haiiia,
4T00bI HanGoIee P(EKTUBHO NepeaTh COOOIIEHNe 00 OTCYTCTBUN FAPAHTHIT; Kaskblil (paiiy Jo/keH colepxkarh 110 MEeHbIIei Mepe CTPOKY,
coiepiKalyio “3HaK OXPaHbI aBTOPCKOTO MpaBa” ¥ YKa3aHKe Ha TO, T/ie HAXOUTCS TOJIHOE YBEIOMIICHHE.

omHa CTpoXa, Colepxamad HasBaHHe NPOTPaMMel U XpaTkoe ONHCaHWe TOro, YTO
OHa Hernaer.
(C) HanMeHOBaHHe (HMMH) aBTOpPa Yyyy

9To cpobomHas MporpaMMa; Bl MOXeTe MOBTOPHO PAaCHPOCTPaHSTh ee u/Hiln
MOIMPULIUPOBATE €€ B COOTBETCTBHMM C YHHBEpPCalbHOH OBmecTBeHHOH
Nuuensuedt GNU, ony6nukoBaHHOH PonmoMm CeoGomuoro I0O; nubo Bepcuu 2,
nu6o (o BameMmy BeIGOPY) mOGOH Gonee Mo3nHEH BEPCHH.

9Ta mporpaMMa pacHpocTpaHgeTCd B Halexme, 4YTO OHa OyHeT IOIe3HOH,
HO BE3 KAKUX-JIUBO FAPAHTHPI; naxe 6e3 MnompasyMeBaeMelXx IapaHTHH
KOMMEPYECKOW LEHHOCTH wmnu [PUCOOHOCTH [JIA KOHKPETHOW LEJU. [ns
MoJyueHHs MONPOGHHIX CBENEHHH CMOTPHTE YHHBepCalbHYIO OBmeCTBEHHYIO
Jluuensumo GNU.

BBl DOMXHEI OBUIM [IONYYHTEH KOMHIO YHHBEPCANbHOH OBmecTBeHHOH JHIEH3HH
GNU BMecTe C 3TOH NPOrpaMMOM; €CNIH HeT, HalWIHTe Mo agpecy: Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

,[Loﬁam;re TaK’K€ CBEJICHUA O TOM, KaK CBA3AThCA C BAMH 110 BHBKTPOHHOﬁ 1 OOBIYHO MOYTe.

Ecim TiporpaMmMa MHTEpaKTUBHas, cliefaiiTe TaK, YTOOBI TIpH 3aIyCKE B MHTEPAKTUBHOM PEKMME OHa BblJlaBajla KPATKOE YBEOMIIEHHE BPOJIe
CleayoIero:

C'HOMOBH30OpP, Bepcus 69, (C) uMg aBTOpa rom

T'uomoBu3op mocTaBigeTca ABCOIIOTHO BE3 KAKHX-JIMBO TAPAHTHH;

o monydeHus nompobHocTed BBemuTe |~ show w’’. DTo cBoBomHas
nporpaMMa, ¥ Bbl NpUriamaeTeCh MNOBTOPHO PACHPOCTPaHETh €€ MpPH
ONpeleNeHHBX yCIOBHSX; [Is IMONyYeHHS MNONpOCHOCTeH BBemure show c’.

T'unoteTnyeckne KoMaHabl “show W’ i “show ¢’ IOJKHBI ITOKa3bIBaTh COOTBETCTBYIOIIHME YacTH Y HuBepcaibHOi ObuecTBenHoi JInnensun. Koneuwo,
HCTIOJTb3yeMble BAMH KOMAH/Ibl MOTYT Ha3bIBATHCS KaK-HUOY/Ib MHAUe, Hexkesn “show W’ 1 “show ¢’; OHH JJake MOTYT BHIOMPATHCSI C TIOMOIIIBIO MBI
WK OBITh MyHKTAMH MEHIO — KaK OOJbIIe TIOJAXOUT VISl BAIlei POrpaMmsl.

BbI Takke JJOMKHBI IOOMTHCSA TOro, 4TOOBI Balll paGoTojaTe b (eC/M Bbl paboTaeTe MPOrpaMMICTOM) MIIK Ballle y4eOHOe 3aBe/IeHNe, eCii TAKOBOe
MMeeTc, MOANUCAI B CTydae “0TKa3 OT MMYIIECTBEHHBIX NpaB” HEOOXOMMMOCTH Ha 3Ty mporpammy. Bot oGpaselr; 3amennTe damummn:

216 System Analysis and Tuning Guide

Komnauns Bparbs EENMHB HAaCTOSmMM OTXa3bHBAETCH OT BCEX HMYMECTBEHHHIX NPaB
Ha nporpamMy [HOMOBHM30Op' (xOTOpas [HenaeT MacChH B CTOPOHY KOMIHISTOPOB)
HanucaHHyYO ABcTpakTHeM K.H.

nonnuck Mara Harta, 1 ampens 1989 r
Mar Hart, IlpesuneHT $upME BHIe.

ta yHUBepca/ibHas OOIECTBEHHAS JIMIIEH3MsA He pa3peliaeT BKI0YaTh Ballly IPOrpaMMy B POrpaMMbl 3alllMIIeHHble naTeHTamu. Eciu Bama
nporpamMma — GUOIMOTEKa MOITPOrPaMM, Bbl MOKETE MOCUMTATh GoJIee MONE3HBIM Pa3peluTh KOMIOHOBATh COOCTBEHHbIE TIPUIIOKEHHS C
oudmroTexoit. Ecim 910 Bam noaxoaut — ucnonb3yiite GNU Lesser General Public License [http: //www.fsf.org/licenses/lgpl
.html] BMeCTO 3TO¥ JIMLIEH3HH.

GNU Free Documentation License

Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free software.

‘We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions
stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You
accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup,
has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of

Nuuensnn GNU

217

http://www.fsf.org/licenses/lgpl.html
http://www.fsf.org/licenses/lgpl.html

transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these
Warranty Disclaimers may have is void and has no effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy
along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has
access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release

the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should,

if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from
this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

218 System Analysis and Tuning Guide

H. Include an unaltered copy of this License.

L. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled “History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance
and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in
the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties--for
example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements
made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by

the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there
are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”;
likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the
aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire

aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

Nuuensnn GNU

219

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections
in addition to the original versions of these Invariant Sections. You may include a translation of this Licens
Document, and any Warranty Di:
those notic

, and all the license notices in the

imers, provided that you also include the original English version of this License and the original versions of

s and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy,
modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License
“or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license
notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU

Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free
software license, such as the GNU General Public License, to permit their use in free software.

220 System Analysis and Tuning Guide

	System Analysis and Tuning Guide
	About This Guide
	1. Доступная документация
	2. Обратная связь
	3. Условные обозначения
	4. О создании этого руководства
	5. Исходный код
	6. Благодарности

	Part I. Basics
	Chapter 1. General Notes on System Tuning
	1.1. Be Sure What Problem to Solve
	1.2. Rule Out Common Problems
	1.3. Finding the Bottleneck
	1.4. Step-by-step Tuning

	Part II. System Monitoring
	Chapter 2. System Monitoring Utilities
	2.1. Multi-Purpose Tools
	2.1.1. vmstat
	2.1.2. System Activity Information: sar and sadc
	Automatically Collecting Daily Statistics With sadc
	Generating reports with sar
	CPU Utilization Report: sar
	Memory Usage Report: sar -r
	Paging Statistics Report: sar -B
	Block Device Statistics Report: sar -d
	Network Statistics Reports: sar -n KEYWORD

	Visualizing sar Data

	2.2. System Information
	2.2.1. Device Load Information: iostat
	2.2.2. Processor Activity Monitoring: mpstat
	2.2.3. Task Monitoring: pidstat
	2.2.4. Kernel Ring Buffer: dmesg
	2.2.5. List of Open Files: lsof
	2.2.6. Kernel and udev Event Sequence Viewer: udevadm monitor
	2.2.7. Information on Security Events: audit
	2.2.8. Server Resources Used by X11 Clients: xrestop

	2.3. Processes
	2.3.1. Interprocess Communication: ipcs
	2.3.2. Process List: ps
	2.3.3. Process Tree: pstree
	2.3.4. Table of Processes: top
	2.3.5. Modify a process' niceness: nice and renice

	2.4. Memory
	2.4.1. Memory Usage: free
	2.4.2. Detailed Memory Usage: /proc/​meminfo
	2.4.3. Process Memory Usage: smaps

	2.5. Networking
	2.5.1. Show the Network Status: netstat
	2.5.2. Interactive Network Monitor: iptraf

	2.6. The /proc File System
	2.6.1. procinfo

	2.7. Hardware Information
	2.7.1. PCI Resources: lspci
	2.7.2. USB Devices: lsusb

	2.8. Files and File Systems
	2.8.1. Determine the File Type: file
	2.8.2. File Systems and Their Usage: mount, df and du
	2.8.3. Additional Information about ELF Binaries
	2.8.4. File Properties: stat

	2.9. User Information
	2.9.1. User Accessing Files: fuser
	2.9.2. Who Is Doing What: w

	2.10. Time and Date
	2.10.1. Time Measurement with time

	2.11. Graph Your Data: RRDtool
	2.11.1. How RRDtool Works
	2.11.2. Simple Real Life Example
	Collecting Data
	Creating Database
	Updating Database Values
	Viewing Measured Values

	2.11.3. For More Information

	Chapter 3. Monitoring with Nagios
	3.1. Features of Nagios
	3.2. Installing Nagios
	3.3. Nagios Configuration Files
	3.3.1. Object Definition Files

	3.4. Configuring Nagios
	3.4.1. Monitoring Remote Services with Nagios
	3.4.2. Monitoring Remote Host-Resources with Nagios

	3.5. Troubleshooting
	3.6. For More Information

	Chapter 4. Analyzing and Managing System Log Files
	4.1. System Log Files in /var/​log/
	4.2. Viewing and Parsing Log Files
	4.3. Managing Log Files with logrotate
	4.4. Monitoring Log Files with logwatch

	Part III. Kernel Monitoring
	Chapter 5. SystemTap—Filtering and Analyzing System Data
	5.1. Conceptual Overview
	5.1.1. SystemTap Scripts
	5.1.2. Tapsets
	5.1.3. Commands and Privileges
	5.1.4. Important Files and Directories

	5.2. Installation and Setup
	5.2.1. Classic Setup and Initial Test
	5.2.2. Client-Server Setup
	Installing SystemTap
	Setting Up the Server
	Setting Up the Client
	Using the Client
	Troubleshooting

	5.3. Script Syntax
	5.3.1. Probe Format
	5.3.2. SystemTap Events (Probe Points)
	5.3.3. SystemTap Handlers (Probe Body)
	Functions
	Other Basic Constructs
	Variables
	Conditional Statements

	5.4. Example Script
	5.5. For More Information

	Chapter 6. Kernel Probes
	6.1. Supported Architectures
	6.2. Types of Kernel Probes
	6.2.1. Kprobe
	6.2.2. Jprobe
	6.2.3. Return Probe

	6.3. Kernel probes API
	6.4. Debugfs Interface
	6.4.1. How to List Registered Kernel Probes
	6.4.2. How to Switch All Kernel Probes On or Off

	6.5. For More Information

	Chapter 7. Perfmon2—Hardware-Based Performance Monitoring
	7.1. Conceptual Overview
	7.1.1. Perfmon2 Structure
	7.1.2. Sampling and Counting

	7.2. Installation
	7.3. Using Perfmon
	7.3.1. Getting Event Information
	7.3.2. Enabling System Wide Sessions
	7.3.3. Monitoring Running Tasks

	7.4. Retrieving Metrics From DebugFS
	7.5. For More Information

	Chapter 8. OProfile—System-Wide Profiler
	8.1. Conceptual Overview
	8.2. Installation and Requirements
	8.3. Available OProfile Utilities
	8.4. Using OProfile
	8.4.1. General Steps
	8.4.2. Getting Event Configurations

	8.5. Using OProfile's GUI
	8.6. Generating Reports
	8.7. For More Information

	Part IV. Resource Management
	Chapter 9. General System Resource Management
	9.1. Planning the Installation
	9.1.1. Partitioning
	9.1.2. Installation Scope
	9.1.3. Default Runlevel

	9.2. Disabling Unnecessary Services
	9.3. File Systems and Disk Access
	9.3.1. File Systems
	NFS

	9.3.2. Disabling Access Time (atime) Updates
	9.3.3. Prioritizing Disk Access with ionice

	Chapter 10. Kernel Control Groups
	10.1. Technical Overview and Definitions
	10.2. Scenario
	10.3. Control Group Subsystems
	10.4. Using Controller Groups
	10.4.1. Prerequisites
	10.4.2. Checking the Environment
	10.4.3. Example: Cpusets
	10.4.4. Example: cgroups

	10.5. For More Information

	Chapter 11. Power Management
	11.1. Power Management at CPU Level
	11.1.1. C-States (Processor Operating States)
	11.1.2. P-States (Processor Performance States)
	11.1.3. T-States (Processor Throttling States)

	11.2. The Linux Kernel CPUfreq Infrastructure
	11.2.1. In-Kernel Governors
	11.2.2. Related Files and Directories

	11.3. Tuning Options for P-states
	11.3.1. Viewing Current Settings with cpufreq-info
	11.3.2. Modifying Current Settings with cpufreq-set
	11.3.3. Modifying Further Settings

	11.4. Tuning Options for C-states
	11.5. Creating and Using Power Management Profiles
	11.6. Monitoring Power Consumption with powerTOP
	11.7. Troubleshooting
	11.8. For More Information

	Part V. Kernel Tuning
	Chapter 12. Installing Multiple Kernel Versions
	12.1. Enabling Multiversion Support
	12.2. Installing/Removing Multiple Kernel Versions with YaST
	12.3. Installing/Removing Multiple Kernel Versions with zypper

	Chapter 13. Tuning Per-Device I/O Performance
	13.1. I/O Scheduler -- /​sys/​block/<device>/​queue/​scheduler
	13.1.1. CFQ
	13.1.2. NOOP
	13.1.3. DEADLINE

	13.2. I/O Barrier Tuning

	Chapter 14. Tuning the Task Scheduler
	14.1. Introduction
	14.1.1. Preemption
	14.1.2. Timeslice
	14.1.3. Process Priority

	14.2. Process Classification
	14.3. O(1) Scheduler
	14.4. Completely Fair Scheduler
	14.4.1. How CFS Works
	14.4.2. Grouping Processes
	14.4.3. Kernel Configuration Options
	14.4.4. Terminology
	14.4.5. Runtime Tuning
	14.4.6. Debugging Interface and Scheduler Statistics

	14.5. For More Information

	Chapter 15. Tuning the Memory Management Subsystem
	15.1. Memory Usage
	15.1.1. Anonymous Memory
	15.1.2. Pagecache
	15.1.3. Buffercache
	15.1.4. Buffer Heads
	15.1.5. Writeback
	15.1.6. Readahead
	15.1.7. VFS caches
	Inode Cache
	Directory Entry Cache

	15.2. Reducing Memory Usage
	15.2.1. Reducing malloc (Anonymous) Usage
	15.2.2. Reducing Kernel Memory Overheads
	15.2.3. Memory Controller (Memory Cgroups)

	15.3. Virtual Memory Manager (VM) Tunable Parameters
	15.3.1. Reclaim Ratios
	15.3.2. Writeback Parameters
	15.3.3. Readahead parameters
	15.3.4. Further VM Parameters

	15.4. Non-Uniform Memory Access (NUMA)
	15.5. Monitoring VM Behavior

	Chapter 16. Tuning the Network
	16.1. Configurable Kernel Socket Buffers
	16.2. Detecting Network Bottlenecks and Analyzing Network Traffic
	16.3. Netfilter
	16.4. For More Information

	Part VI. Handling System Dumps
	Chapter 17. Tracing Tools
	17.1. Tracing System Calls with strace
	17.2. Tracing Library Calls with ltrace
	17.3. Debugging and Profiling with Valgrind
	17.3.1. Installation
	17.3.2. Supported Architectures
	17.3.3. General Information
	17.3.4. Default Options
	17.3.5. How Valgrind Works
	17.3.6. Messages
	17.3.7. Error Messages

	17.4. For More Information

	Chapter 18. Kexec and Kdump
	18.1. Introduction
	18.2. Required Packages
	18.3. Kexec Internals
	18.4. Basic Kexec Usage
	18.5. How to Configure Kexec for Routine Reboots
	18.6. Basic Kdump Configuration
	18.6.1. Manual Kdump Configuration
	18.6.2. YaST Configuration

	18.7. Analyzing the Crash Dump
	18.7.1. Kernel Binary Formats
	x86 (i386 and x86_64)
	IA64
	PPC and PPC64

	18.8. Advanced Kdump Configuration
	18.9. For More Information

	Appendix A. Лицензии GNU
	A.1. Универсальная Общественная Лицензия GNU (GNU General Public License)
	A.1.1. Преамбула
	A.1.2. ОПРЕДЕЛЕНИЯ И УСЛОВИЯ ДЛЯ КОПИРОВАНИЯ, РАСПРОСТРАНЕНИЯ И МОДИФИКАЦИИ
	НИКАКИХ ГАРАНТИЙ
	КОНЕЦ ОПРЕДЕЛЕНИЙ И УСЛОВИЙ

	A.1.3. Как применять эти условия к вашим новым программам

	A.2. GNU Free Documentation License
	A.2.1. PREAMBLE
	A.2.2. APPLICABILITY AND DEFINITIONS
	A.2.3. VERBATIM COPYING
	A.2.4. COPYING IN QUANTITY
	A.2.5. MODIFICATIONS
	A.2.6. COMBINING DOCUMENTS
	A.2.7. COLLECTIONS OF DOCUMENTS
	A.2.8. AGGREGATION WITH INDEPENDENT WORKS
	A.2.9. TRANSLATION
	A.2.10. TERMINATION
	A.2.11. FUTURE REVISIONS OF THIS LICENSE
	A.2.12. ADDENDUM: How to use this License for your documents

