
AutoYaST

Automatic Linux Installation and Config-
uration with YaST2

SUSE Linux Products GmbH

Anas Nashif,
Uwe Gansert, SuSE Linux Products GmbH

AutoYaST: Automatic Linux Installation and Configuration
with YaST2
SUSE Linux Products GmbH
by Anas Nashif and Uwe Gansert
Copyright © 2004 SuSE Linux AG

Table of Contents
1. Introduction .. 1

1.1. Availability .. 1
1.2. Motivation ... 1
1.3. Overview and Concept ... 1

2. The Control File .. 5
2.1. Introduction ... 5
2.2. Format .. 5
2.3. Structure .. 6

2.3.1. Resources and Properties .. 6
2.3.2. Nested Resources .. 6
2.3.3. Attributes .. 7

2.4. The XML Document Type Definition (DTD) .. 8
2.4.1. Introduction ... 8
2.4.2. Example DTD .. 8

3. Creating A Control File ..11
3.1. Collect information ...11
3.2. Using the Configuration Management System ..11

3.2.1. Creating a new Profile ..11
3.2.2. Import of Legacy and Foreign Configuration Files11

3.3. Creating/Editing a Control File Manually ..11
3.4. Creating a Profile (control file) via Script with XSLT12

4. Configuration and Installation Options ..15
4.1. General Options ...15
4.2. Reporting ..16
4.3. The Boot loader ...17
4.4. Partitioning ...18

4.4.1. drive configuration ...18
4.4.2. partition configuration ..20
4.4.3. raid options ...23
4.4.4. Automated Partitioning ...24
4.4.5. Advanced Partitioning features ...26

4.4.5.1. Wipe out partition table ..26
4.4.5.2. Mount Options ..26
4.4.5.3. Creating Primary and Extended Partitions27
4.4.5.4. Keeping Specific Partitions ...28

4.4.6. Using existing mount table (fstab) ...29
4.4.7. Logical Volume Manager (LVM) ...30
4.4.8. Enterprise Volume Management System (EVMS)31
4.4.9. Software RAID ...32

4.5. Software ...33
4.5.1. Package Selections until SUSE Linux 10.1 (not SLES10)33
4.5.2. Package Selections with patterns (SLES10 and SUSE Linux 10.2)34
4.5.3. Custom Package Selections ...34
4.5.4. Installing additional and customized Packages35
4.5.5. Kernel packages ..37
4.5.6. Removing automatically selected packages37

4.6. Services and Run-levels ...38
4.7. Network configuration ..39

4.7.1. Network devices, DNS and Routing. ...39
4.7.2. Proxy ..39
4.7.3. (X)Inetd ...40
4.7.4. NIS ...40
4.7.5. LDAP client ...41
4.7.6. NFS Client and Server ..41
4.7.7. NTP Client ...42

4.8. Mail Configuration (Sendmail or Postfix) ...42
4.9. Security settings ...43

v

4.9.1. Password Settings Options ...44
4.9.2. Boot Settings ..44
4.9.3. Login Settings ...44
4.9.4. New user settings (useradd settings) ..45

4.10. Monitor and X11 Configuration ..45
4.11. Users ..45
4.12. Custom user scripts ...46

4.12.1. Pre-Install Scripts ...46
4.12.2. Chroot environment scripts ..47
4.12.3. Post-Install Scripts ...49
4.12.4. Init Scripts ..50
4.12.5. Script example ...51

4.13. System variables (Sysconfig) ..52
4.14. Adding complete configurations ..53
4.15. Miscellaneous hardware and system components ..54

4.15.1. Printer ..54
4.15.2. Sound devices ...54

4.16. Ask the user for values during installation ...55
5. Network Based Installation ...59

5.1. Configuration Server ...59
5.1.1. HTTP Repository ...59
5.1.2. NFS Repository ...59
5.1.3. TFTP Repository ...59

6. Rules and Classes ...61
6.1. Rule based auto-installation ..61

6.1.1. Rules File explained ...61
6.1.2. Custom Rules ..62
6.1.3. Match Types for rules ...63
6.1.4. Combine Attributes ..63
6.1.5. Rules file structure ...64
6.1.6. Predefined System Attributes ...64

6.2. Classes ...65
6.3. Mixing Rules and Classes ..66
6.4. The merging process of Rules and Classes ..66

7. The Auto-Installation Process ..69
7.1. Introduction ..69

7.1.1. X11 Interface ..69
7.1.2. Serial console ..69
7.1.3. Text based YaST2-Installation ...69

7.2. Choosing the right Boot Medium ...69
7.2.1. Booting from a floppy ..69
7.2.2. Booting from CD-ROM ..70
7.2.3. Booting via PXE over the network ..70

7.3. Invoking the Auto-Installation process ...71
7.3.1. Command line Options ...71
7.3.2. Auto-installing a Single System ..74
7.3.3. Combining linuxrc info file with YaST2 control file75

7.4. System Configuration ...75
7.4.1. Post-Install and System Configuration ...75
7.4.2. System Customization ..76

8. Legacy and foreign Configuration formats ...77
8.1. Migration from YaST1 and ALICE ..77

8.1.1. ALICE modules ..77
8.1.2. Other configuration options with YaST2 and ALICE78

8.2. Redhat Kickstart ..78
8.2.1. Software selections and packages ..78
8.2.2. User scripts ...78

A. Handling Rules ..79
B. Advanced Linuxrc Options ..81

B.1. Passing parameters to Linuxrc ..81
B.2. 'info' file format ...81
B.3. Advanced Network Setup ..83

AutoYaST

vi

List of Figures
1.1. Auto-installation process .. 3
3.1. Configuration System ...11
3.2. Editing the control file with kxmledit ..12
4.1. Keeping partitions ..29
6.1. Rules ...61
6.2. Defining Classes ..66
A.1. Rules Retrieval Process ..79

vii

viii

List of Tables
4.1. ..18
4.2. ..20
4.3. ..23
4.4. ..36
4.5. pre script XML representation ..46
4.6. chroot script XML representation ..47
4.7. post script XML representation ...49
4.8. init script XML representation ..50
4.9. XML representation ..55
6.1. System Attributes ...64
7.1. Keywords for linuxrc ...71
7.2. Command line variables for AutoYaST ..72
8.1. ALICE vs. YaST2 modules ..77
B.1. Advanced linuxrc keywords ..81

ix

x

List of Examples
2.1. XML Control File (Profile) ... 5
2.2. Control file container ... 6
2.3. Nested Resources .. 7
2.4. Nested Resources with type attributes ... 7
2.5. Example DTD .. 8
3.1. Example file for replacing hostname/domain by script ...12
4.1. General Options ...15
4.2. Reporting Behavior ..16
4.3. Bootloader configuration ...17
4.4. Serial console configuration with GRUB ..17
4.5. Bootloader configuration for PPC ..18
4.6. Automated partitioning ..25
4.7. Detailed automated partitioning ..25
4.8. Mount Options ...27
4.9. Advanced Automated partitioning ...27
4.10. Creating custom extended partitions ...28
4.11. Keeping partitions ..28
4.12. Auto-detection of partitions to be kept. ...29
4.13. Reading existing /etc/fstab ..30
4.14. Create LVM Physical Volume ...30
4.15. LVM Logical Volumes (New syntax) ...30
4.16. EVMS Logical Volumes ..31
4.17. RAID1 configuration ...32
4.18. Package selection in control file ..33
4.19. Package selection in control file with patterns ..34
4.20. Customized Package selection ...34
4.21. Package selection file ..35
4.22. Creating package database ..35
4.23. Package selection in control file ..37
4.24. Package selection in control file ..38
4.25. Run-level Configuration ..38
4.26. Network configuration ...39
4.27. Netwrok configuration: Proxy ...39
4.28. Inetd Example ..40
4.29. Network configuration: NIS ..40
4.30. Network configuration: LDAP client ..41
4.31. Network configuration: NFS client ...41
4.32. Network configuration: NFS Server ...42
4.33. Network configuration: NTP Client ..42
4.34. Mail Configuration ...42
4.35. Security configuration ...44
4.36. X11 and Monitor configuration ...45
4.37. User configuration ..45
4.38. Post script configuration ..51
4.39. Sysconfig Configuration ..52
4.40. Dumping files into the installed system ...53
4.41. Dumping files into the installed system ...53
4.42. Printer configuration ...54
4.43. Sound configuration ..54
6.1. Simple rules file ...61
6.2. Simple rules file ...62
7.1. Determine HEX code for an IP address ...74
7.2. Linxurc options in the control file ..75

xi

xii

Chapter 1. Introduction
AutoYaST is a system for installing one or more SuSE Linux systems automatically and without
user intervention. AutoYaST installations are performed using a control file with installation and
configuration data. The control file can be created using the configuration insterface of AutoYaST
and can be provided to YaST2 during installation in different ways.

1.1. Availability
AutoYaST is available with recent SuSE products starting from SuSE Linux 8.0 and business
products starting from SLES 8.

Products prior to SuSE Linux 8.0 and business products based on SLES 7 have an auto-installation
system based on YaST1. A configuration management system is provided by ALICE for these
products.

Updated documentation

Updated documentation can always be found at the following URL: ht-
tp://yast2.suse.com/autoinstall/

1.2. Motivation
The Linux Journal [http://www.linuxjournal.com/], in an article in issue 78
[http://www.linuxjournal.com/categories.php?op=newindex&catid=178] writes:

“ A standard Linux installation asks many questions about what to install, what hardware to config-
ure, how to configure the network interface, etc. Answering these questions once is informative and
maybe even fun. But imagine a system engineer who has to set up a new Linux network with a large
number of machines. Now, the same issues need to be addressed and the same questions answered
repeatedly. This makes the task very inefficient, not to mention a source of irritation and boredom.
Hence, a need arises to automate this parameter and option selection.”

“The thought of simply copying the hard disks naturally crosses one's mind. This can be done
quickly, and all the necessary functions and software will be copied without option selection.
However, the fact is that simple copying of hard disks causes the individual computers to become
too similar. This, in turn, creates an altogether new mission of having to reconfigure the individual
settings on each PC. For example, IP addresses for each machine will have to be reset. If this is not
done properly, strange and inexplicable behavior results.”

Regular installation of SuSE Linux is semi-automated by default. The user is requested to select the
necessary information at the beginning of the installation (In most cases language only), YaST2 then
generates a proposal for the underlying system depending on different factors and system paramters.
In most cases, and especially for new systems, such a proposal can be used to install the system and
provides a usable installation.

The steps following the proposal are fully automated and the user is only prompted at the end of the
installation to configure hardware and network services.

AutoYaST can be used where no user intervention is required or where customization is required.
Using a control file, YaST2 prepares the system for a custom installation and avoids any interaction
with the user, unless specified in the file controling the installation.

AutoYaST is not an automated GUI system. This means that in most cases many screen will be
skipped, i.e. you will never see the language selection interface. AutoYaST will simply pass the lan-
guage parameter to the sub-system without displaying any language related interface.

1.3. Overview and Concept

1

http://yast2.suse.com/autoinstall/
http://yast2.suse.com/autoinstall/
http://www.linuxjournal.com/
http://www.linuxjournal.com/categories.php?op=newindex&catid=178

Using AutoYaST, multiple systems sharing the same environment and similar but not necesserily
identical hardware performing similar tasks can easily be installed in parallel and in a short time. A
configuration file (referred to as "control file") is created using existing configuration resources. The
control file can be easily tailored for any specific environment.

Unlike autoinstallation systems available with older SuSE releases, AutoYaST is fully integrated
and provides various options for installing and configuring a system. The main advantage over older
systems and other auto-installation systems is the possibility to configure a computer by using exist-
ing modules and avoiding using custom scripts which are normally executed at the end of the in-
stallation.

This document will guide you through the three steps of auto-installation:

• Preparation: All relevant information about the target system are collected and turned into the
appropriate directives of the control file. The control file is transferred onto the target system
where its directives will be parsed and transformed to YaST2 conforming data.

• Installation: follows the instructions given in the control file and installs the base system.

• Configuration: YaST2 in addition to user-defined post-install scripts complete the system con-
figuration

The complete and detailed process is illustrated in the following figure:

1.3. Overview and Concept

2

Figure 1.1. Auto-installation process

1.3. Overview and Concept

3

4

Chapter 2. The Control File
2.1. Introduction

The control file is in most cases a configuration description for a single system. It consists of sets of
resources with properties including support for complex structures representations such as lists, re-
cords, trees and large embedded or referenced objects.

2.2. Format
The XML configuration format provides a consistent file structure, which is easier to learn and re-
member when attempting to configure a new system.

Using XML, you can eliminate (nearly) all of the configuration file parsing and error handling - an
external XML parser can do that instead - (especially if it is a validating parser). To make sure the
control file is well-formatted and that the syntax is valid, you can run the control file through a val-
idating parser before it is actually used for automatic installation. This is especially required if you
prefer to edit the profile manually.

The following example shows a control file in XML format:

Example 2.1. XML Control File (Profile)

<?xml version="1.0"?>
<!DOCTYPE profile SYSTEM
"/usr/share/autoinstall/dtd/profile.dtd">
<profile
xmlns="http://www.suse.com/1.0/yast2ns"
xmlns:config="http://www.suse.com/1.0/configns">
<install> <!-- install is deprecated since SUSE Linux 10.0 -->

<partitioning config:type="list">
<drive>

<device>/dev/hda</device>
<partitions config:type="list">
<partition>

<filesystem config:type="symbol">ext2</filesystem>
<size>520Mb</size>
<mount>/</mount>

</partition>
<partition>

<filesystem config:type="symbol">reiser</filesystem>
<size>1200Mb</size>
<mount>/data</mount>

</partition>
</partitions>

</drive>
</partitioning>

</install> <!-- install is deprecated since SUSE Linux 10.0 -->
<configure> <!-- configure is deprecated since SUSE Linux 10.0 -->

<scripts>
<pre-scripts>
<script>

<interpreter>shell</interpreter>
<filename>start.sh</filename>
<source>

<![CDATA[
#!/bin/sh
echo "Starting installation"
exit 0

]]>

</source>
</script>
</pre-scripts>
</scripts>

</configure> <!-- configure is deprecated since SUSE Linux 10.0 -->
</profile>

5

2.3. Structure
Below is an example of a basic control file container, the actual content of which is explained later
on in this chapter.

Example 2.2. Control file container

<?xml version="1.0"?>
<!DOCTYPE profile SYSTEM
"/usr/share/autoinstall/dtd/profile.dtd">
<profile
xmlns="http://www.suse.com/1.0/yast2ns"
xmlns:config="http://www.suse.com/1.0/configns">

<!-- RESOURCES -->

</profile>

The profile element (root node) contains one or more distinct resource elements. The permissible re-
source elements are specified in the DTD.

The root element in the control file can for example contain the following sub-keywords:

• installation (Tag <install> this tag is deprecated since SUSE Linux 10.0)

• Bootloader configuration: bootloader device, bootloader location (Tag <bootloader>)

• Partitioning: drives and partition plans (Tag <partitioning>)

• General: Installation instructions, including all variables related to the client i.e. display, lan-
guages, keyboard etc. (Tag <general>)

• Software: Software and Package selections (Tag <software>)

• configuration (Tag <configure> this tag is deprecated since SUSE Linux 10.0)

• Network: network configuration for the client and servers providing services to the target cli-
ent (Tag <networking>)

• Users: user administration, including first user and root. (Tag <users>)

• User scripts: (Tag <scripts>)

2.3.1. Resources and Properties
A resource element either contains multiple and distinct property and resource elements or contains
multiple instances of the same resource element or is empty. The permissible content of a resource
element is specified in the DTD.

A property element is either empty or contains a literal value. The permissible property elements
and values in each resource element are specified in the DTD.

An element can be either a container of other elements (a resource) or have a literal value (a prop-
erty), it can never be both. This restriction is specified in the DTD. A configuration component with
more than one value must either be represented as some kind of embedded list in a property value or
as a nested resource.

2.3.2. Nested Resources

2.3.1. Resources and Properties

6

1 Profile attributes are in a separate namespace so they don't have to be treated as reserved words in the default namespace.
New ones can then be added without having to potentially alter existing profiles.

Nested resource elements allow a tree like structure of configuration components to be built to any
level.

Example 2.3. Nested Resources

...
<drive>
<device>/dev/hda</device>
<partitions config:type="list">

<partition>
<size>1000mb</size>
<mount>/</mount>

</partition>
<partition>

<size>250mb</size>
<mount>/tmp</mount>

</partition>
</partitions>

</drive>
....

In the example above the disk resource consists of a device property and a partitions resource. The
partitions resource contains multiple instances of the partition resource. Each partition resource con-
tains a size and mount property.

Although it is specified in the DTD that the partitions resource contains multiple instances, it is still
required to specify this to avoid wrong data typing in YaST2. Using the example above, imagine
having a drive with only one partition. This will result in interpreting the partition resource as a
property. To avoid this the following syntax must be used when defining multiple instances. For
more information about type attributes, see next section.

Example 2.4. Nested Resources with type attributes

...
<drive>
<device>/dev/hda</device>
<partitions config:type="list">

<partition>
<size>1000</size>
<mount>/</mount>

</partition>
<partition>

<size>250</size>
<mount>/tmp</mount>

</partition>
</partitions>

</drive>
....

2.3.3. Attributes
Global profile attributes are used to define meta-data on resources and properties. Attributes are
used to define context switching. They are also used for naming and typing properties as shown in
earlier sectionons 1.

Profile attributes are defined in the configuration namespace and must always be prefixed with con-
fig: . All profile attributes are optional. Most can be used with both resource and property elements
but some can only be used with one type of element which is specified in the DTD.

2.3.3. Attributes

7

The type of an element is defined using the config:type attribute. The type of a resource element is
always RESOURCE , although this can also be made explicit with this attribute (to ensure correct
identification of an empty element for example when there is no DTD to refer to). A resource ele-
ment cannot be any other type and this restriction is specified in the DTD. The type of a property
element determines the interpretation of its literal value. The type of a property element defaults to
STRING , as specified in the DTD. The full set of permissible types is specified in the DTD.

2.4. The XML Document Type Definition (DTD)

2.4.1. Introduction
The purpose of a DTD is to define the legal building blocks of an XML document. It defines the
document structure with a list of legal elements. A DTD can be declared inline in the XML docu-
ment, or as an external reference.

XML provides an application independent way of sharing data. With a DTD, the application can use
a standard DTD to verify that data that the user supplies is valid. A "Valid" XML document is a
"Well Formed" XML document which conforms to the rules of a Document Type Definition (DTD).

In AutoYaST, a DTD should is available to allow users to validate the control files before the in-
stallation process is initiated. The DTD can be also used with XML editors while editing the control
file to avoid later errors.

2.4.2. Example DTD

• A drive resource containing a device property and a partitions property represented as a nested
resource.

• A partitions resource containing multiple instances of the partition property represented as a
nested resource.

• A partition resource containing a size property and a mount property.

Below is the XML for an example node view profile for the above tree which includes a DTD which
validates it.

Example 2.5. Example DTD

<?xml version="1.0"?>
<!DOCTYPE profile [
<!ELEMENT profile (install)>
<!ELEMENT install (partitioning)>
<!ELEMENT partitioning (drive+)>
<!ELEMENT drive (device,partitions)>
<!ELEMENT device (#PCDATA)>
<!ELEMENT partitions (partition*)>
<!ELEMENT partition (size,mount)>
<!ELEMENT size (#PCDATA)>
<!ELEMENT mount (#PCDATA)>
]>
<profile>
.....

<install>
<partitioning config:type="list">
<drive>

<device>
/dev/hda

</device>
<partitions>
<partition>
<size>1000mb</size>
<mount>/</mount>

</partition>
<partition>
<size>250mb</size>
<mount>/tmp</mount>

</partition>

2.4. The XML Document Type Defini-
tion (DTD)

8

</partitions>
</drive>

</partitioning>
</install>

.....
</profile>

2.4.2. Example DTD

9

10

Chapter 3. Creating A Control File
3.1. Collect information

In order to create the control file, first you need to collect information about the systems your are
going to install. This includes among other things hardware data and network information. Make
sure you know the following about the machines you want to install:

• Hard disk types and sizes

• Graphic interface and attached monitor if any

• Network interface and MAC address if known (i.e. when using DHCP)

With these parameters you are ready to go and create a profile of your systems to control the auto-
installation process.

3.2. Using the Configuration Management System
In order to create the control file for one or more computers, a configuration interface based on
YaST2 is provided. This system depends on existing modules which are usually used to configure a
computer in regular operation mode, i.e. after SuSE Linux is installed.

The configuration management system lets you create control files easily and additionally it lets you
manage a repository of configurations for use in a networked environment and with multiple clients.

Figure 3.1. Configuration System

3.2.1. Creating a new Profile
With some exceptions, almost all resources of the control file can be configured using the configura-
tion management system. The system offers flexibility and configuration of some resources is
identical to this available in the YaST2 Control Center. In addition to the existing and familiar mod-
ules new interfaces were created for special and complex configurations, for example for partition-
ing, general options and software.

Furthermore, using the CMS guarantees that the resulting control file is valid and insures that it can
be used directly to start automated installation.

Make sure the configuration system is installed (package autoyast2) and call it using the YaST2
Control Center or call it directly as root with the following command (make sure the DISPLAY vari-
able is set correctly to start the graphical user interface instead of the text based one):

/sbin/yast2 autoyast

3.2.2. Import of Legacy and Foreign Configuration Files
AutoYaST offers the option to import ALICE configuration files from previous SuSE releases and
foreign auto-installation systems (Kickstart). Consult the chapter dealing with these issues in this
manual.

3.3. Creating/Editing a Control File Manually

11

If you edit the control file manually, make sure it has a valid syntax. To check the syntax, use some
tools already available on the distribution. For example to verify that the file is well formed, use the
utility xmllint available with the libxml2 package:

xmllint <control file>

If the control file is not well formed, i.e. if a tag is not closed, xmllint will report about the errors.

Before going on with the auto-installation, please fix any errors resulting from such checks. The
auto-installation process can't be started with an invalid and non-well formed control file.

You can use any XML editor available on your system or use your favorite text editor with XML
support (i.e. Emacs, Vim). However, it is not quite optimal to create the control file manually for
large number of machines and it should only be seen as an interface between the auto-installation
engine and the Configuration Management System (CMS).

Figure 3.2. Editing the control file with kxmledit

3.4. Creating a Profile (control file) via Script with
XSLT

For the case you have a template and just want to change a few things via script or command line,
you can use a XSLT processor like sablot for this. Lets say you have an autoyast profile and you
want to fillout the hostname via script for any reason (maybe because you have to do it so often, you
want to script it)

First you have to create an XSL file

Example 3.1. Example file for replacing hostname/domain by script

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:y2="http://www.suse.com/1.0/yast2ns"
xmlns:config="http://www.suse.com/1.0/configns"
xmlns="http://www.suse.com/1.0/yast2ns"
version="1.0">

<xsl:output method="xml" encoding="UTF-8" indent="yes" omit-xml-declaration="no" cdata-section-elements="source"/>

<!-- the parameter names -->
<xsl:param name="hostname"/>
<xsl:param name="domain"/>

<xsl:template match="/">
<xsl:apply-templates select="@*|node()"/>

</xsl:template>

<xsl:template match="y2:dns">
<xsl:copy>
<!-- where to copy the parameters -->
<domain><xsl:value-of select="string($domain)"/></domain>
<hostname><xsl:value-of select="string($hostname)"/></hostname>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

<xsl:template match="@*|node()" >
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

3.4. Creating a Profile (control file) via
Script with XSLT

12

As you can see, this file expects the "hostname" and the "domain" as parameters from the user.

<xsl:param name="hostname"/>
<xsl:param name="domain"/>

There will be a "copy" of those parameters in the "dns" section of the control file. That means, if
there already is a domain element in the dns section, you'll get a second one (no good).

If you want to create a new autoyast profile now from the template plus the XSL file, run the follow-
ing command:

sabcmd add_hostname.xsl \$hostname=myHost \$domain=my.domain template.xml

You'll get a filled out autoyast profile then on STDOUT.

If you have multiple XSL files you want to apply to a template, do it like this

sabcmd add_hd_vg.xsl \$device=/dev/sda \$partition=p2 \$vg=system \
| sabcmd add_harddisk.xsl \$device=/dev/system \$lvm=true \
| sabcmd
| sabcmd add_hostname.xsl \$hostname=myHost \$domain=my.domain

So you just pipe the output of each sabcmd to the next sabcmd.

For more information aout XSLT, go to the official webpage www.w3.org/TR/xslt
[http://www.w3.org/TR/xslt]

3.4. Creating a Profile (control file) via
Script with XSLT

13

http://www.w3.org/TR/xslt

14

Chapter 4. Configuration and
Installation Options

This chapter introduces important parts of a control file for standard purposes. To have an idea
about the other options available, use the configuration management system.

Note that for some of the configuration options to work, additional packages have to be installed,
depending on the software selection you have configured. If you choose to install Minimal then
some packages might be missing and those have to be added to the individual package selection.

YaST will install packages required by YaST modules in the second phase of the installation and
before the post-installation phase of AutoYaST has started, however if the YaST modules are not
available in the system, this will not happen. For example, no security settings will be configured if
yast2-security is not installed.

4.1. General Options
General options include all the settings related to the installation process and the environment of the
installed system. Among others it includes the following 4 properties which are required: language,
keyboard, clock and mouse almost for any installation. If left out, default values will be used, which
might not be in one hand with what you want.

Example 4.1. General Options

<general>
<signature-handling>

<accept_unsigned_file config:type="boolean">true</accept_unsigned_file>
<accept_file_without_checksum config:type="boolean">true</accept_file_without_checksum>
<accept_verification_failed config:type="boolean">true</accept_verification_failed>
<accept_unknown_gpg_key config:type="boolean">true</accept_unknown_gpg_key>
<accept_non_trusted_gpg_key config:type="boolean">true</accept_non_trusted_gpg_key>

</signature-handling>
<mode>
<halt config:type="boolean">false</halt>

<confirm config:type="boolean">true</confirm>
<second_stage config:type="boolean">true<second_stage>

</mode>
</general>

By default, the auto-installation process has to be confirmed by the user. The confirmation should be
disabled if a fully unattended installation is desired. This option is used to view and change the set-
tings on a target system before anything is committed and can be used for debugging. It is set to true
by default to avoid recursive installs when the system schedules a reboot after initial system setup.

With halt you make autoyast to turn off the machine after all packages have been installed. So in-
stead of the reboot into stage two, the machine is turned off. The bootloader is alreay installed and
all your chroot scripts have run.

Change starting from SUSE Linux 9.1/SLES 9

The reboot property in the mode resource was used to force a reboot after initial sys-
tem setup and before the system is booted for the first time. Currently after initial in-
stallation all systems must boot, which makes this option obsolete.

SLES9 Only Options

15

In SLES 9, it is possible to halt the system after the initial installation phase using the
boolean property halt

Change starting from SUSE Linux 10.1/SLES10

The language, keyboard and clock properties in the general resource were moved to
the root (profile) element of the autoyast profile. So don't use them in the general sec-
tion anymore.

Since now you can use the second_stage property, which can turn off autoyast after the
first reboot. So the complete second stage is a manual installation (default is true,
which means that autoyast is doing a complete installation).

For the signature-handling, please read the Software chapter of this documentation.

4.2. Reporting
The report resource manages 3 types of pop-ups that may appear during installation.

• Messages Popups (Usually non-critical, informative messages)

• Warning Popups (If something might go wrong)

• Error Popups (In the case of an error)

Example 4.2. Reporting Behavior

<report>
<messages>

<show config:type="boolean">true</show>
<timeout config:type="integer">10</timeout>
<log config:type="boolean">true</log>

</messages>
<errors>

<show config:type="boolean">true</show>
<timeout config:type="integer">10</timeout>
<log config:type="boolean">true</log>

</errors>
<warnings>

<show config:type="boolean">true</show>
<timeout config:type="integer">10</timeout>
<log config:type="boolean">true</log>

</warnings>
</report>

Depending on your experience, you can skip, log and show (with timeout) those messages. It is re-
commended to show all messages with timeout. Warnings can be skipped in some places but should
not be ignored.

By default, the settings in auto-installation mode is to show all messages without logging and with a
timeout of 10 seconds.

Critical system messages

Note that not all messages during installation are controlled by the report resource.
Some critical messages concerning package installation and partitioning will still show
up ignoring your settings in the report section. Mostly those messages will have to be

4.2. Reporting

16

answered with Yes or No.

4.3. The Boot loader
It is now possible to specify which bootloader needs to be installed and it is possible to specify sec-
tions and more bootloader options.

If the bootloader resource is not configured at all, the system will propose a configuration based on
the partitioning scheme. If no global variables are configured, the system will propose a configura-
tion for the global variables based on the partitioning scheme. Similarly, if no sections are con-
figured, the system will propose a section configuration. No changes or additions will be made to
existing global variables or existing sections. Only for the grub bootloader, missing standard values
in the global variables will be filled with default values.

In some cases you must decide where to install the bootloader (the Master Boot Record or the first
sector of the /boot partition) and must specify additional options for the bootloader to be installed
correctly.

Boot Partition on IA64 Systems

The boot partition on IA64 is /boot/efi and is set to this value if only /boot is con-
figured in the control file.

Additionally, you can configure special kernel and boot parameters, Kernel parameters can be con-
figured using the kernel_parameters property.

Example 4.3. Bootloader configuration

<?xml version="1.0"?>
<!DOCTYPE profile SYSTEM "/usr/share/autoinstall/dtd/profile.dtd">
<profile xmlns="http://www.suse.com/1.0/yast2ns" xmlns:config="http://www.suse.com/1.0/configns">

<bootloader>
<global config:type="list">

<global_entry>
<key>prompt</key>
<value config:type="boolean">false</value>

</global_entry>
</global>
<loader_device></loader_device>
<loader_type>lilo</loader_type>
<location>mbr</location>
<sections config:type="list"/>

</bootloader>
</profile>

The global resource is used to configure additional boot loader options. Note that bootloaders can
have different configurable options. Consult the documentation for the specific bootloader you want
to use before adding any options.

For example, to configure the serial console with grub, you can add the following options:

Example 4.4. Serial console configuration with GRUB

<bootloader>
<global config:type="list">

<global_entry>
<key>serial</key>
<value>--unit=1 --speed=115200</value>

</global_entry>
<global_entry>
<key>terminal</key>

4.3. The Boot loader

17

<value>serial console</value>
</global_entry>

</global>
<loader_type>grub</loader_type>
<location></location>

</bootloader>

Tip

The bootloader configuration interface offers more configuration options than one
might need for a regular setup. The options described in the example above should be
sufficient for most cases.

In the current version, bootloader configuration also supports different architectures and boards. The
configuration of the bootloader can be done offline using AutoYaST. For example, the bootloader
configuration for PPC has the following additional options:

Example 4.5. Bootloader configuration for PPC

<?xml version="1.0"?>
<!DOCTYPE profile SYSTEM "/usr/share/autoinstall/dtd/profile.dtd">
<profile xmlns="http://www.suse.com/1.0/yast2ns" xmlns:config="http://www.suse.com/1.0/configns">

<bootloader>
<board_type>iseries</board_type>
<global config:type="list"/>
<iseries_streamfile>/boot/suse_linux_bootfile</iseries_streamfile>
<iseries_write_prepboot config:type="boolean">true</iseries_write_prepboot>
<iseries_write_slot_a config:type="boolean">true</iseries_write_slot_a>
<iseries_write_slot_b config:type="boolean">true</iseries_write_slot_b>
<iseries_write_streamfile config:type="boolean">true</iseries_write_streamfile>
<loader_device>B</loader_device>
<loader_type>ppc</loader_type>
<location></location>
<prep_boot_partition>/dev/hda1</prep_boot_partition>

</bootloader>
</profile>

Currently the following bootloaders can be configured offline using the AutoYaST interface:

• LILO

• GRUB

• ELILO

• zipl

• yaboot

4.4. Partitioning

4.4.1. drive configuration
The following elements must be between the <partitioning config:type="list"><drive> ...
</drive></partitioning> tags in the <profile> section.

Table 4.1.

4.4. Partitioning

18

Attribute Values Description

device the device you want to config-
ure in this section. Since SUSE
Linux 10.1 and SLES10, you
can use persistent device names
via id, like /
dev/disk/by-id/edd-int13_dev80.
With SLES10 SP1 and SUSE
Linux 10.2, by-path is possible
too like /
dev/
disk/
by-
path/
pci-0001:00:03.0-scsi-0:0:0:0.

<device>/dev/hda</device>

optional. If left out, autoyast
tries to guess the device. A
RAID must always have "/
dev/md" as device

initialize if set to true, the partition table
gets wiped out before autoyast
starts the partition calculation

<initialize config:type="boolean">true</initialize>

optional. The default is false.

is_lvm_vg This tells autoyast that this
device is not a physical device
but a LVM volume group (see
LVM configuration below)

<is_lvm_vg config:type="boolean">true</is_lvm_vg>

DEPRECATED since
SLES10SP1 and SL10.2 - use
type instead. Must be true if this
device is a LVM volume group.
The default is false.

is_evms_vg this tells autoyast that this
device is not a physical device
but an EVMS volume group
(see EVMS configuration be-
low)

<is_evms_vg config:type="boolean">true</is_evms_vg>

DEPRECATED since
SLES10SP1 and SL10.2 - use
type instead. Must be true if this
device is an EVMS volume
group. The default is false.

partitions this is a list of <partition>
entries (see table below)

<partitions config:type="list"><partition>...</partition>...</partitions>

optional. If no partition is spe-
cified, autoyast will create it's
own idea of a nice partitioning
(see Automated Partitioning be-
low).

pesize this value makes only sense
with LVM/EVMS.

<pesize>8M</pesize>

optional. Default is 4M for
EVMS/LVM volume groups.

use this parameter tells autoyast
which strategy it shall use to
partition the harddisc.

You can choose between:

• all (uses the whole device
while calculating the new
partitioning)

• linux (only existing linux

this parameter should be
provided

4.4.1. drive configuration

19

Attribute Values Description

partitions are used)

• free (only unused space on
the device gets used. No
other partitions gets
touched)

• 1,2,3 (a list of comma seper-
ated numbers that indicates
the partition numbers to use)

type this value describes the type of
the drive and is a replacement
for is_lvm_vg and is_evms_vg
used in SLES10 and SL10.1

You can choose between:

• CT_DISK for physical hard-
disks (default)

• CT_LVM for LVM volume
groups

• CT_EVMS for EVMS
volume groups

<type config:type="symbol">CT_LVM</type>

optional. Default is CT_DISK
for a normal physical harddisk.

4.4.2. partition configuration
The following elements must be between the <partitions config:type="list"><partition> ...
</partition></partitions> tags in the <drive> section.

Table 4.2.

Attribute Values Description

create
the "create" tells autoyast if this
partition must be created or if
it's already existing

<create config:type="boolean">false</create>

if set to false, there must be
some information for autoyast
which partition this is (like with
partition_nr)

mount
the mountpoint of this partition.

<mount>/</mount>

<mount>swap</mount>

you should have at least a root
partition (/) and a swap partition

fstopt
mount options for this partition

see "man mount" for the moun-
toptions you can use

4.4.2. partition configuration

20

Attribute Values Description

<fstopt>ro,noatime,user,data=ordered,acl,user_xattr</fstopt>

label
the label the partition has
(useful for the "mountby" para-
meter - see below).

<label>mydata</label>

see "man e2label" for example.

uuid
the uuid the partition has (only
useful for the "mountby" para-
meter - see below).

<uuid>1b4e28ba-2fa1-11d2-883f-b9a761bde3fb</uuid>

see "man uuidgen"

size
the size for the partition like
4G, 4500M, ... The /boot parti-
tion and the swap partition can
have "auto" as size too, to let
autoyast calculate a reasonable
size for them. On partition can
have the value "max" to fillup
all available space.

with SUSE Linux 10.2 and
SLES10 SP1, you can specify
the the size in percentage. So
10% will use 10% of the size of
the harddisk/VG. You can mix
auto,max,sizes and percentage
like you want.

<size>10G</size>

format
shall autoyast format the parti-
tion?

<format config:type="boolean">false</format>

if "create" is true, then it's very
likely that this is true too

filesystem
what filesystem is used on this
partition?

• reiser (the default)

• ext2

• ext3

• xfs

• jfs

<filesystem config:type="symbol">reiser</filesystem>

optional. The default is reiser

4.4.2. partition configuration

21

Attribute Values Description

partition_nr
the partition_nr this partition
has/will have. If you have set
create=false, then you can tell
autoyast which partition you
mean by the partition_nr. You
can force autoyast to create only
primary partitions by configur-
ing only partition numbers be-
low 5.

<partition_nr config:type="integer">2</partition_nr>

in most cases nr. 1-4 are
primary partitions and 5-... are
logical partitions

partition_id
the partition_id configures the
id of the partition. If you want
something else than 131 for
linux partition or 130 for swap,
you must configure that with
partition_id.

<partition_id config:type="integer">131</partition_id>

the default is 131 for linux par-
tition. 130 for swap is set by
autoyast itself too.

filesystem_id
look at partition_id above. For
historical reasons they represent
the same.

<filesystem_id config:type="integer">131</filesystem_id>

since 10.1 and SLES10 it's re-
commended to use partition_id
instead.

mountby
instead of a partition number,
you can tell autoyast to mount a
partition by label or by uuid

<mountby config:type="symbol">label</mountby>

see "label" and "uuid" docu-
mentation above

lv_name
if this partition is in a logical
volume in a volume group
(LVM or EVMS) (see
is_lvm_vg/is_evms_vg para-
meter in drive configuration)
you must specifiy the logical
volume name here.

<lv_name>opt_lv</lv_name>

lvm_group
if this is a physical partition that
is used by (part of) a volume
group (LVM), you have to spe-
cify the name of the volume
group here.

<lvm_group>system</lvm_group>

evms_group
if this physical partition is used
by a volume group (EVMS),
you have to specify the name of

4.4.2. partition configuration

22

Attribute Values Description

the volume group here.

<evms_group>system</evms_group>

raid_name
this physical volume is part of a
RAID and the name of the raid
is specified here.

<raid_name>/dev/md0</raid_name>

raid_type
this physical volume is part of a
RAID and the type of the raid is
specified here..

<raid_type>raid1</raid_type>

raid_options
special options for the raid are
specified here. See below.

<raid_options>...</raid_options>

resize
This parameter is available
since SLES10 SP1 and
OpenSUSE 10.2. This boolean
must be true if an existing parti-
tion should be resized. In this
case, you want to set create to
false too and in most cases you
don't want to format the parti-
tion. You need to tell autoyast
the partition_nr and the size.
The size can be in percentage of
the original size or as a number
of the new size, like 800M. max
and auto don't work as size
here.

<resize config:type="boolean">false</resize>

The resize only works with
physical disks. Not with LVM/
EVMS volumes.

4.4.3. raid options
The following elements must be between the <partition><raid_options> ...
</raid_options></partition> tags.

Table 4.3.

Attribute Values Description

chunk_size

<chunk_size>4</chunk_size>

parity_algorithm

4.4.3. raid options

23

Attribute Values Description

possible values are:
left_asymmetric,
left_symmetric,
right_asymmetric,
right_symmetric

<parity_algorithm>left_asymmetric</parity_algorithm>

raid_type
possible values are raid0,raid1
and raid5

<raid_type>raid1</raid_type>

the default is raid1

4.4.4. Automated Partitioning
For the automated partitioning to be completed, only the sizes and mount points of partitions can be
provided. All other data needed for successful partitioning can be calculated during installation if
they were not provided in the control file.

If no partitions are defined and the specified drive is also the drive where the root partition should be
created, the following partitions are created automatically:

• /boot

Size of the /boot is determined by the architecture of the target system.

• swap

Size of the swap partitions is determined by the amount of memory available in the system.

• / (root partition)

Size of the / (root partition) is the space left after creating swap and /boot.

Depending on the initial status of the drive and how it was previously partitioned, it is possible to
create the default partitioning in the following ways:

• Use free space

If the drive is already partitioned, it is possible to create the new partitions using the available
space on the hard drive. This requires the availability of enough space for all selected packages
in addition to swap.

• Reuse all available space

This option will lead to the deletion of all existing partitions (Linux and non-Linux partitions).

• Reuse all available Linux partitions

This option will lead to the deletion of existing Linux partitions. All other partitions (i.e. Win-
dows) will be kept. Note that this works only if the Linux partitions are at the end of the device.

• Reuse only specified partitions

This option will lead to the deletion of the specified partitions. The selection of the partitions
scheduled for deletion should be started from the last available partition.

4.4.4. Automated Partitioning

24

Repartitioning using only some of the existing partitions can be accomplished only if the region se-
lected to be partitioned exists at the end of the device and only with neighboring partitions. This
means that you cannot repartition a region which contains a partition that should not be touched in
the middle.

Important Notice

The value provided in the use property determines how existing data and partitions are
treated. The value all means that ALL data on the disk will be erased. Make backups
and use the confirm property if you are going to keep some partitions with important
data. This is automated installation and no pop-ups will notify you about partitions be-
ing deleted.

In case of the presence of multiple drives in the target system, all drives must be identified with their
device names and how the partitioning should be performed.

Partition sizes can be given in Gigabytes, Megabytes or can be set to a flexible value using the
keywords auto and max. max is used to fill a partition to the maximal available space on a drive
(Which mean that the partition should be the last one on the drive). auto can be used to determine
the size of a swap or boot partitions depending on the memory available and the type of the system.

A fixed size can be given as shown below:

1GB will create a partition with 1 GB size. 1500MB will create a partition which is 1.5 GB big.

Example 4.6. Automated partitioning

The following is an example of a single drive system, which is not pre-partitioned and should be
automatically partitioned according to the described pre-defined partition plan. If you leave the
device out, an autodetection of the device will happen. So you don't have to do different profiles for
/dev/sda or /dev/hda systems.

<partitioning config:type="list">
<drive>
<device>/dev/hda</device>
<use>all</use>

</drive>
</partitioning>

A more detailed example shows how existing partitions and multiple drives are handled.

Example 4.7. Detailed automated partitioning

<partitioning config:type="list">
<drive>

<device>/dev/hda</device>
<partitions config:type="list">
<partition>

<mount>/</mount>
<size>5gb</size>

</partition>
<partition>

<mount>swap</mount>
<size>1gb</size>

</partition>
</partitions>

</drive>
<drive>

<device>/dev/hdb</device>
<use>all</use>
<partitions config:type="list">
<partition>

<filesystem config:type="symbol">reiser</filesystem>

4.4.4. Automated Partitioning

25

<mount>/data1</mount>
<size>15gb</size>

</partition>
<partition>

<filesystem config:type="symbol">jfs</filesystem>
<mount>/data2</mount>
<size>auto</size>

</partition>
</partitions>
<use>free</use>

</drive>
</partitioning>

4.4.5. Advanced Partitioning features

4.4.5.1. Wipe out partition table

In the most cases this is not needed because autoyast can delete partitions one by one automatically
but you have the option to let autoyast clear the partition table instead of deleting the partitions indi-
vidually.

if you go into the "drive" section, you can add

<initialize config:type="boolean">true</initialize>

which tells Autoyast to delete the partition table before it starts to analyse the actual partitioning and
calculates it's partition plan. Of course this means, that you can't keep any of your existing parti-
tions.

4.4.5.2. Mount Options

By default a file system which is to be mounted is identified in /etc/fstab by the device name.
This identification can be changed so the file system is found by searching for a UUID or a volume
label. Note that not all file systems can be mounted by UUID or a volume label. To specify how a
partition is to be mounted, use the mountby property which has the symbol type. Possible options
are:

• device (default)

• label

• UUID

If you choose to mount the partition using a label, the name entered in the label property is used as
the volume label.

Add any legal mount option allowed in the fourth field of /etc/fstab. Multiple options are sep-
arated by commas. Possible fstab options:

• Mount Read-Only (ro): No writable access to the file system is possible. Default is false.

• No access time (noatime): Access times are not updated when a file is read. Default is false.

• Mountable by User (user): The file system may be mounted by an ordinary user. Default is false.

• Data Journaling Mode (ordered | journal | writeback) : Specifies the journaling mode for file
data. journal -- All data is committed into the journal prior to being written into the main file
system. ordered -- All data is forced directly out to the main file system prior to its meta data be-
ing committed to the journal. writeback -- Data ordering is not preserved.

4.4.5. Advanced Partitioning features

26

• Access Control List (acl): Enable access control lists on the file system.

• Extended User Attributes (user_xattr): Allow extended user attributes on the file system.

Example 4.8. Mount Options

<partitions config:type="list">
<partition>
<filesystem config:type="symbol">reiser</filesystem>
<format config:type="boolean">true</format>
<fstopt>ro,noatime,user,data=ordered,acl,user_xattr</fstopt>
<mount>/local</mount>
<mountby config:type="symbol">uuid</mountby>
<partition_id config:type="integer">131</partition_id>
<size>10gb</size>

</partition>
</partitions>

4.4.5.3. Creating Primary and Extended Partitions

By default, AutoYaST will create an extended partition and will add all other new partitions as lo-
gical devices. It is possible however to instruct AutoYaST to create a certain partition as a primary
or as extended partition. Additionally, it is possible to specify the size of a partition using sectors in-
stead of the size in Mbytes.

The properties partition_id and partition_type control such behavior. To specify the size in sectors,
the list resource region can be used.

Example 4.9. Advanced Automated partitioning

<partitioning config:type="list">
<drive>
<device>/dev/hdc</device>
<partitions config:type="list">

<partition>
<partition_id config:type="integer">5</partition_id>
<region config:type="list">
<region_entry config:type="integer">0</region_entry>
<region_entry config:type="integer">16858</region_entry>

</region>
</partition>
<partition>
<filesystem config:type="symbol">reiser</filesystem>
<mount>/</mount>
<partition_id config:type="integer">131</partition_id>
<region config:type="list">
<region_entry config:type="integer">0</region_entry>
<region_entry config:type="integer">2081</region_entry>

</region>
</partition>
<partition>
<mount>swap</mount>
<partition_id config:type="integer">130</partition_id>
<region config:type="list">
<region_entry config:type="integer">2081</region_entry>
<region_entry config:type="integer">781</region_entry>

</region>
</partition>

</partitions>
<use>all</use>

</drive>
</partitioning>

The last example only makes sense if you exactly know the boundaries of the partitions and it does
only make sense if you are creating an exact copy of a system, for example when cloning. The first

4.4.5. Advanced Partitioning features

27

region entry in the list is the beginning of the region, the second represents the length of the region.

The following example lets you create an extended partition with a custom size.

Example 4.10. Creating custom extended partitions

<partitioning config:type="list">
<drive>
<device>/dev/hdc</device>
<partitions config:type="list">

<partition>
<filesystem config:type="symbol">ext2</filesystem>
<mount>/boot</mount>
<partition_id config:type="integer">131</partition_id>
<partition_nr config:type="integer">2</partition_nr>
<size>50mb</size>

</partition>
<partition>
<mount>swap</mount>
<partition_id config:type="integer">130</partition_id>
<partition_nr config:type="integer">3</partition_nr>
<size>100mb</size>

</partition>
<partition>
<partition_id config:type="integer">15</partition_id>
<partition_nr config:type="integer">4</partition_nr>
<size>3000mb</size>

</partition>
<partition>
<filesystem config:type="symbol">ext2</filesystem>
<mount>/</mount>
<partition_id config:type="integer">131</partition_id>
<partition_nr config:type="integer">5</partition_nr>
<size>1gb</size>

</partition>
</partitions>
<use>free</use>

</drive>
</partitioning>

</install>

4.4.5.4. Keeping Specific Partitions

In some cases you might choose to keep some partitions untouched and only format specific target
partitions, rather than creating them from scratch. This might be the case of Linux installations have
to co-exist with another operating system or if certain partitions contain data that you wish to keep
untouched.

Such scenarios require certain knowledge about the target systems and hard drives. Depending on
the scenario, you might need to know the exact partition table of the target hard drive with partition
id's, sizes and numbers. With such data you can tell AutoYaST to keep certain partitions, format
others and create new partitions if needed.

The following example will keep partitions 1, 2 and 5 and delete partition 6 to create two new parti-
tions. All kept partitions will be only formatted.

Example 4.11. Keeping partitions

<partitioning config:type="list">
<drive>

<device>/dev/hdc</device>
<partitions config:type="list">
<partition>
<create config:type="boolean">false</create>
<format config:type="boolean">true</format>
<mount>/</mount>
<partition_nr config:type="integer">1</partition_nr>

</partition>
<partition>
<create config:type="boolean">false</create>

4.4.5. Advanced Partitioning features

28

<format config:type="boolean">false</format>
<partition_nr config:type="integer">2</partition_nr>
<mount>/space</mount>

</partition>
<partition>
<create config:type="boolean">false</create>
<format config:type="boolean">true</format>
<filesystem config:type="symbol">swap</filesystem>
<partition_nr config:type="integer">5</partition_nr>
<mount>swap</mount>

</partition>
<partition>
<format config:type="boolean">true</format>
<mount>/space2</mount>
<size>50mb</size>

</partition>
<partition>
<format config:type="boolean">true</format>
<mount>/space3</mount>
<size>max</size>

</partition>
</partitions>
<use>6</use>

</drive>
</partitioning>

The last example requires exact knowledge about the existing partition table and about the partition
numbers of those partitions that should be kept. In some cases however, such data might be not
available, especially in a mixed hardware environment with different hard drive types and configur-
ations. The following scenario is for a system with a non-Linux OS with a designated area for a
Linux installation.

Figure 4.1. Keeping partitions

In this scenario and as shown in figure “Keeping partitions” , AutoYaST should not in any case cre-
ate any new partitions, instead it should search for certain partition types on the system and use
them according to the partitioning plan in the control file. No partition numbers are given in this
case, only the mount points and the partition types (Additional configuration data can be provided,
for example file system options, encryption and filesystem type)

Example 4.12. Auto-detection of partitions to be kept.

<partitioning config:type="list">
<drive>

<partitions config:type="list">
<partition>
<create config:type="boolean">false</create>
<format config:type="boolean">true</format>
<mount>/</mount>
<partition_id config:type="integer">131</partition_id>

</partition>
<partition>
<create config:type="boolean">false</create>
<format config:type="boolean">true</format>
<filesystem config:type="symbol">swap</filesystem>
<partition_id config:type="integer">130</partition_id>
<mount>swap</mount>

</partition>
</partitions>

</drive>
</partitioning>

4.4.6. Using existing mount table (fstab)

New Feature

This option will allow the AutoYaST to use an existing /etc/fstab and use the partition data

4.4.6. Using existing mount table
(fstab)

29

from from a previous installation. All partitions are kept and no new partitions are created. The
found partitions will be formatted and mounted as specified in /etc/fstab found on a Linux root
partition.

Although the default behaviour is to format all partitions, it is also possible to leave some partitions
untouched and only mount them, for example data partitions. If multiple installations are found on
the system (multiple root partitions with different fstab files, the installation will abort, unless the
desired root partition is configured in the control file. The following example illustrates how this op-
tion can be used:

Example 4.13. Reading existing /etc/fstab

<partitioning_advanced>
<fstab>

<!-- Read data from existing fstab. If multiple root partitions are
found, use the one specified below. Otherwise the first root
partition is taken -->
<!-- <root_partition>/dev/hda5</root_partition> -->
<use_existing_fstab config:type="boolean">true</use_existing_fstab>
<!-- all partitions found in fstab will be formatted and mounted
by default unless a partition is listed below with different
settings -->
<partitions config:type="list">
<partition>
<format config:type="boolean">false</format>
<mount>/bootmirror</mount>

</partition>
</partitions>

</fstab>
</partitioning_advanced>

4.4.7. Logical Volume Manager (LVM)
To configure LVM, first you need to create a physical volume using the normal partitioning method
described above.

Example 4.14. Create LVM Physical Volume

The following example shows how to prepare for LVM in the partitioning resource:

<partitioning config:type="list">
<drive>
<device>/dev/sda</device>

<partitions config:type="list">
<partition>
<lvm_group>system</lvm_group>
<partition_type>primary</partition_type>
<size>max</size>

</partition>
</partitions>
<use>all</use>

</drive>
</partitioning>

The last example will create a non-formatted partition on device /dev/sda1 of the type LVM and
with the volume group system. The partition created will use all available space on this drive.

Example 4.15. LVM Logical Volumes (New syntax)

<partitioning config:type="list">
<drive>

4.4.7. Logical Volume Manager (LVM)

30

<device>/dev/sda</device>
<partitions config:type="list">

<partition>
<lvm_group>system</lvm_group>
<partition_type>primary</partition_type>
<size>max</size>

</partition>
</partitions>
<use>all</use>

</drive>
<drive>
<device>/dev/system</device>
<is_lvm_vg config:type="boolean">true</is_lvm_vg>
<partitions config:type="list">

<partition>
<filesystem config:type="symbol">reiser</filesystem>
<lv_name>user_lv</lv_name>
<mount>/usr</mount>
<size>500mb</size>

</partition>
<partition>
<filesystem config:type="symbol">reiser</filesystem>
<lv_name>opt_lv</lv_name>
<mount>/opt</mount>
<size>1500mb</size>

</partition>
<partition>
<filesystem config:type="symbol">reiser</filesystem>
<lv_name>var_lv</lv_name>
<mount>/var</mount>
<size>200mb</size>

</partition>
</partitions>
<pesize>4M</pesize>
<use>all</use>

</drive>
</partitioning>

With SUSE Linux 10.1 and all following versions, it's possible to set the size to max for the logical
volumes. Of course, you can only use max only for one(!) logical volumes. You can't have two lo-
gical volumes in one volume group with the size set to max

4.4.8. Enterprise Volume Management System (EVMS)
Since SLES10 autoyast has EVMS support.

Using EVMS is quite similar to using LVM (see above). So switching from LVM to EVMS is just a
small change in the autoyast profile. All you have to do is to change the "is_lvm_vg" element into
"is_evms_vg" and the "lvm_group" element into "evms_group".

With autoyast it's not possible to mix LVM and EVMS.

Using the LVM example from above for EVMS now looks like this:

Example 4.16. EVMS Logical Volumes

<partitioning config:type="list">
<drive>
<device>/dev/sda</device>
<partitions config:type="list">

<partition>
<evms_group>system</evms_group>
<partition_type>primary</partition_type>
<size>max</size>

</partition>
</partitions>
<use>all</use>

</drive>
<drive>
<device>/dev/system</device>
<is_evms_vg config:type="boolean">true</is_evms_vg>
<partitions config:type="list">

<partition>
<filesystem config:type="symbol">reiser</filesystem>
<lv_name>user_lv</lv_name>
<mount>/usr</mount>
<size>500mb</size>

</partition>
<partition>

4.4.8. Enterprise Volume Manage-
ment System (EVMS)

31

<filesystem config:type="symbol">reiser</filesystem>
<lv_name>opt_lv</lv_name>
<mount>/opt</mount>
<size>1500mb</size>

</partition>
<partition>
<filesystem config:type="symbol">reiser</filesystem>
<lv_name>var_lv</lv_name>
<mount>/var</mount>
<size>200mb</size>

</partition>
</partitions>
<pesize>4M</pesize>
<use>all</use>

</drive>
</partitioning>

4.4.9. Software RAID
Using AutoYaST, you can create and assemble software RAID devices. The supported RAID levels
are the following:

• RAID 0: This level increases your disk performance. There is NO redundancy in this mode. If
one of the drives crashes, data recovery will not be possible.

• RAID 1:This mode has the best redundancy. It can be used with two or more disks. This mode
maintains an exact copy of all data on all disks. As long as at least one disk is still working, no
data is lost. The partitions used for this type of RAID should have approximately the same size.

• RAID 5: This mode combines management of a larger number of disks and still maintains some
redundancy. This mode can be used on three disks or more. If one disk fails, all data is still in-
tact. If two disks fail simultaneously, all data is lost.

• Multipath:This mode allow access to the same physical device over multiple controller for re-
dundancy against a fault in a controller card. This mode can be used with at least two devices.

As with LVM, you need to create all RAID partitions first and assign the partitions to the RAID
device you want to create and additionally you need to specify whether a partition or a device
should be configured in the RAID or if it should configured as a Spare device.

The following example shows a simple RAID1 configuration:

Example 4.17. RAID1 configuration

<partitioning config:type="list">
<drive>
<device>/dev/sda</device>
<partitions config:type="list">

<partition>
<partition_id config:type="integer">253</partition_id>
<format config:type="boolean">false</format>
<raid_name>/dev/md0</raid_name>
<raid_type>raid</raid_type>
<size>4gb</size>

</partition>

<!-- Here come the regular partitions, i.e. / and swap -->
</partitions>
<use>all</use>

</drive>
<drive>
<device>/dev/sdb</device>

<partitions config:type="list">
<partition>
<format config:type="boolean">false</format>
<partition_id config:type="integer">253</partition_id>
<raid_name>/dev/md0</raid_name>
<raid_type>raid</raid_type>
<size>4gb</size>

</partition>

4.4.9. Software RAID

32

</partitions>
<use>all</use>

</drive>
<drive>
<device>/dev/md</device>
<partitions config:type="list">

<partition>
<filesystem config:type="symbol">reiser</filesystem>
<format config:type="boolean">true</format>
<mount>/space</mount>
<partition_id config:type="integer">131</partition_id>
<partition_nr config:type="integer">0</partition_nr>
<raid_options>
<chunk_size>4</chunk_size>
<parity_algorithm>left-asymmetric</parity_algorithm>
<raid_type>raid1</raid_type>

</raid_options>

</partition>
</partitions>
<use>all</use>

</drive>

</partitioning>

The following has to be taken into consideration when configuring raid:

• The device for raid is always /dev/md

• The property partition_nr is used to determine the MD device number. if partition_nr is equal to
0, then /dev/md0 is configured.

• All RAID specific options are contained in the raid_options resource.

4.5. Software

4.5.1. Package Selections until SUSE Linux 10.1 (not
SLES10)

You can install software on the new system using a pre-defined package base selection, i.e. Minim-
al, Minimal+X11, default etc. in addition to several Add-on selections. Check the first CD for avail-
able selections in suse/setup/descr/selections, depending on the product you are in-
stalling, some "well-known" selections might not be available.

In the control file, packages and package selections are described as the following:

Example 4.18. Package selection in control file

<software>

<addons config:type="list">
<addon>Kde</addon>

</addons>
<base>Minimal</base>
<packages config:type="list">
<package>apache</package>
<package>sendmail</package>

</packages>
</software>

You can install one base selection and additionally one or multiple add-on selections.

When installing from a CD-ROM, needed packages from other CD-ROMs are installed after the ini-
tial boot of the system in the second installation phase. If you are installing packages from multiple

4.5. Software

33

CD-ROMs, then auto-installation has to be interrupted for switching the CD-ROMs. In the case of
NFS installation, all packages are installed at first stage of the installation only if the NFS repository
is configured as a single medium.

It is often required, that a package should be installed in the second phase, especially custom pack-
ages which may contain scripts for configuring the system. This can be done using the post-
packages resource.

4.5.2. Package Selections with patterns (SLES10 and
SUSE Linux 10.2)

SLES10 no longer supports selections but uses patterns now. Autoyast is not be able to convert se-
lections into patterns and so you have to do that on your own. If you want to use a SLES9 autoyast
profile to install a SLES10 server, you have to remove all addon entries and the base entry. Patterns
are configured like this:

Example 4.19. Package selection in control file with patterns

<software>
<patterns config:type="list">

<pattern>directory_server</pattern>
</patterns>
<packages config:type="list">
<package>apache</package>
<package>sendmail</package>

</packages>
</software>

As you can see, the packages section is still the same like on a SLES9. Just the addon and base is
gone.

4.5.3. Custom Package Selections
In addition to the pre-defined selections, you can create custom selections by providing a selection
file in the selection directory. (suse/setup/descr) The selection files have a special format and
any additional selection file must conform to this format, otherwise YaST2 will not be able to read
it.

As an example for the selection file, take a look at the files available in the directory /
suse/setup/descr/ on the CD-ROMs.

After creating a selection file, you can add it to the configuration as described earlier in this section.
The selection name, for example My.sel has to be added to the index files selections and dir-
ectory.yast to make it visible to the installer.

The file My.sel should have the following format:

Example 4.20. Customized Package selection

SuSE-Linux-Package-Selection 3.0 -- (c) 2004 SuSE Linux AG
generated on Thu Apr 15 19:49:04 UTC 2004

=Ver: 3.0

=Sel: LSB

=Sum: LSB Runtime Environment
=Sum.de: LSB-Laufzeitumgebung

=Cat: addon

4.5.2. Package Selections with pat-
terns (SLES10 and SUSE Linux 10.2)

34

=Vis: true

=Ord: 108

+Ins:
XFree86-Mesa
XFree86-libs
expect
fontconfig
freetype2
gettext
glibc-i18ndata
libgcj
lsb
make
makedev
patch
pax
rsync
-Ins:

To use the above selection, the following should be added in the control file:

Example 4.21. Package selection file

...
<software>

<base>My</base>
</software>
...

4.5.4. Installing additional and customized Packages
In addition to the packages available for installation on the CD-ROMs, you can add external pack-
ages including customized kernels. Customized kernel packages must be compatible to the SuSE
packages and must install the kernel files to the same locations.

Unlike earlier versions, to install custom and external packages there is no need for a special re-
source in the control file. Instead you need to re-create the package database and update it with any
new packages or new package versions in the source repository.

A script is provided for this task which will query packages available in the repository and create the
required package database.

Creating a new package database is only needed if new RPMs (i.e. update RPMs) were added. To
re-create the database, use the /usr/bin/create_package_descr command. For example, use this
command line to create the package database. (When creating the database, all languages will be re-
set to English).

Example 4.22. Creating package database

cd /usr/local/CDs/LATEST/suse
create_package_descr -x PATH_TO_EXTRA_PROV -d /usr/local/CDs/LATEST/suse

Change starting from SUSE Linux 9.1/SLES 9

To provide extra dependencies which can not be extracted from the rpm files, an extra
file with missing dependencies is available in the directory suse/setup/descr.

4.5.4. Installing additional and cus-
tomized Packages

35

The file EXTRA_PROV can be used when recreating the package database using the -x
option.

In the above example, the directory /usr/local/CDs/LATEST/suse contains the architecture
dependent and independent packages, i.e. noarch and i586. This might look different on other archi-
tectures.

The advantage of this method is that you can keep an up-to-date repository with fixed and updated
package (i.e. from SuSE FTP server). Additionally this method makes the creation of custom CD-
ROMs easier.

Change starting from SUSE Linux 10.1/SLES 10

With SLES10/SL10.1, the concept of adding own RPMs to an installation source has
changed. The yast/order and yast/instorder is no longer supported. Neither by AutoY-
aST nor by YaST. To add own RPMs to an installation source (that includes add-on
products like the SDK) you have to add a file add_on_products to the CD1 of the main
product.

media_url [path_on_media [product_1 [product_2 [....]]]

media_url is URL of the media itself path_on_media is path of the catalog on the me-
dia. If not present, / (root) is assumed product_1 and following are the names for
products, which should be marked for installation. If no product is mentioned, all
products found on the media are selected for installation. For example:

http://192.168.66.6/SLES10/sdk/CD1
http://192.168.66.6/SLES10/CD1/updates

Besides that add_on_products file, you can use the autoyast profile to specify add-on
products. For example:

<add-on>
<add_on_products config:type="list">

<listentry>
<media_url>http://192.168.66.6/SLES10/CD1/updates</media_url>
<product>SuSE-Linux-Updates</product>
<product_dir>/</product_dir>

</listentry>
</add_on_products>
</add-on>

With that entry in the autoyast profile, the add_on_products file is not necessary.

YaST checks the signatures of files on the installation source now. If a content file is
not signed, during a manual installation YaST asks the user what to do. During an
autoinstallation, the installation source gets rejected silently.

If you want to use unsigned installation sources with autoyast, you can turn of the checks with the
following configuration in your autoyast profile (part of the general section.

The following elements must be between the <general><signature-handling> ...
</signature-handling></general> tags.

Table 4.4.

Attribute Values Description

accept_unsigned_file the installer will accept un-
signed files like the content file

<accept_unsigned_file config:type="boolean">true</accept_unsigned_file>

optional. If left out, autoyast lets
yast decide what to do

4.5.4. Installing additional and cus-
tomized Packages

36

Attribute Values Description

accept_file_without_checksum the installer will accept files
without a checksum in the con-
tent file

<accept_file_without_checksum config:type="boolean">true</accept_file_without_checksum>

optional. If left out, autoyast lets
yast decide what to do

accept_verification_failed the installer will accept files
where the verification of the
signature failed. So the file was
signed but the check failed.

<accept_verification_failed config:type="boolean">true</accept_verification_failed>

optional. If left out, autoyast lets
yast decide what to do

accept_unknown_gpg_key the installer will accept new gpg
keys on the installation source
that are used to sign the content
file for example

<accept_unknown_gpg_key config:type="boolean">true</accept_unknown_gpg_key>

optional. If left out, autoyast lets
yast decide what to do

accept_non_trusted_gpg_key This basically means, we know
the key, but it is not trusted

<accept_non_trusted_gpg_key config:type="boolean">true</accept_non_trusted_gpg_key>

optional. If left out, autoyast lets
yast decide what to do

import_gpg_key the installer will accept and im-
port new gpg keys on the in-
stallation source in it's database.

<import_gpg_key config:type="boolean">true</import_gpg_key>

optional. If left out, autoyast lets
yast decide what to do

4.5.5. Kernel packages
Kernel packages are not part of any selection. The required kernel is determined during installation.
If the kernel package is added to any selection or to the individual package selection, installation
will mostly fail due to conflicts.

To force the installation of a specific kernel, use the kernel property. The following is an example
forcing the installation of the default kernel. In this example this kernel will be installed in any case,
even if an SMP or other kernel is required

Example 4.23. Package selection in control file

<software>
<addons config:type="list">
<addon>Kde</addon>

</addons>
<base>Minimal</base>
<kernel>kernel-default</kernel>
<packages config:type="list">
<package>apache2</package>

</packages>
</software>

4.5.6. Removing automatically selected packages

4.5.5. Kernel packages

37

Some packages are selected automatically either because of a dependency or because it available in
a selection.

Removing such packages might break the system consistency and it is not recommended to remove
basic packages unless a replacement which provides same services is provided. Best example for
this case are MTA packages. By default, postfix will be selected and installed. If you wish however
to use another MTA like sendmail, then postfix can be removed from the list of selected package us-
ing a list in the software resource. The following example shows how this can be done:

Example 4.24. Package selection in control file

<software>
<addons config:type="list">
<addon>Kde</addon>

</addons>
<base>Minimal</base>
<packages config:type="list">
<package>sendmail</package>

</packages>
<remove-packages config:type="list">
<package>postfix</package>

</remove-packages>
</software>

4.6. Services and Run-levels
With the run-level resource you can set the default run-level and specify in detail which system ser-
vices you want to be started in which run-level.

The default property specifies the default run level of the system. Changes to the default run-level
will take effect the next time you boot the system. After installation is completed, the system has
run-level 5, which is Full multiuser with network and XDM. If you have configured a system with
no X11, then it is recommended to reboot the system after the first stage using the reboot property in
the general resource.

A service should run in using a space delimited list of the run-levels as shown in the following ex-
ample. An alternative to specifying the exact run-levels is to change the status of the service by
either enabling or disabling it using the service_status property.

Example 4.25. Run-level Configuration

....
<runlevel>
<default>3</default>
<services config:type="list" >
<service>
<service_name>at</service_name>
<service_start>3 5</service_start>
</service>
<service>
<service_name>portmap</service_name>
<service_status>enable</service_status>
</service>
<service>
<service_name>hwscan</service_name>
<service_status>disable</service_status>
</service>

</services>
</runlevel>

....

4.6. Services and Run-levels

38

4.7. Network configuration

4.7.1. Network devices, DNS and Routing.
Network configuration is used to connect a single SuSE Linux workstation to an Ethernet-based
LAN or to configure dial-up connection. More complex configuration (multiple network cards, rout-
ing, etc.) is also provided. With this module it's possible to configure and setup Ethernet Controllers
and Token-Ring Controllers.

To configure network settings and activate networking automatically, one global resource is used to
store the whole network configuration.

Example 4.26. Network configuration

.....
<networking>
<dns>

<dhcp_hostname config:type="boolean">true</dhcp_hostname>
<dhcp_resolv config:type="boolean">true</dhcp_resolv>
<domain>local</domain>
<hostname>linux</hostname>

</dns>
<interfaces config:type="list">

<interface>
<bootproto>dhcp</bootproto>
<device>eth0</device>
<startmode>onboot</startmode>

</interface>
</interfaces>
<routing>

<ip_forward config:type="boolean">false</ip_forward>
<routes config:type="list">
<route>
<destination>default</destination>
<device>-</device>
<gateway>192.168.1.240</gateway>
<netmask>-</netmask>

</route>
</routes>

</routing>
<modules config:type="list">

<module_entry>
<device>eth0</device>
<module>e100</module>
<options></options>

</module_entry>
</modules>

</networking>
....

4.7.2. Proxy
Configure your Internet proxy (caching) settings using this resource.

HTTP proxy is the name of the proxy server for your access to the world wide web (WWW). FTP
proxy is the name of the proxy server for your access to the file transfer services (FTP). No proxy
domains is a list of domains for which the requests should be done directly without caching.

If you are using a proxy server with authorization, fill in Proxy user name and Proxy password.

Example 4.27. Netwrok configuration: Proxy

<?xml version="1.0"?>
<!DOCTYPE profile SYSTEM "/usr/share/autoinstall/dtd/profile.dtd">
<profile xmlns="http://www.suse.com/1.0/yast2ns" xmlns:config="http://www.suse.com/1.0/configns">

<proxy>
<enabled config:type="boolean">true</enabled>
<ftp_proxy>http://192.168.1.240:3128</ftp_proxy>
<http_proxy>http://192.168.1.240:3128</http_proxy>

4.7.1. Network devices, DNS and
Routing.

39

<no_proxy>localhost</no_proxy>
<proxy_password>testpw</proxy_password>
<proxy_user>testuser</proxy_user>

</proxy>
</profile>

4.7.3. (X)Inetd
The profile has elements to specify which superserver should be used (netd_service), whether it
should be enabled (netd_status) and how the services should be configured (netd_conf).

A service description element has conceptually two parts: key and non-key. When writing the con-
figuration, services are matched using the key fields and to the matching service, non-key fields are
applied. If no service matches, it is created. If more services match, a warning is reported. The key
fields are script, service, protocol and server.

Service and protocol are matched literally. script is the base name of the config file: usually a file in
/etc/xinetd.d, for example "echo-udp", or "inetd.conf". For compatibility with 8.2, server is
matched more loosely: if it is /usr/sbin/tcpd, the real server name is taken from server_args.
After that, the basename of the first whitespace-sparated word is taken and these values are com-
pared.

Example 4.28. Inetd Example

<profile>
...
<inetd>

<netd_service config:type="symbol">xinetd</netd_service>
<netd_status config:type="integer">0</netd_status>
<netd_conf config:type="list">
<conf>

<script>imap</script>
<service>pop3</service>
<enabled config:type="boolean">true</enabled>

</conf>
<conf>

<server>in.ftpd</server>
<server_args>-A</server_args>
<enabled config:type="boolean">true</enabled>

</conf>
<conf>

<service>daytime</service>
<protocol>tcp</protocol>

</conf>
....
<conf>...</conf>

</netd_conf>
</inetd>
...

</profile>

4.7.4. NIS
Using the nis resource, you can configure the target machine as a NIS client. The following example
shows a detailed configuration using multiple domains.

Example 4.29. Network configuration: NIS

...
<nis>
<nis_broadcast config:type="boolean">true</nis_broadcast>
<nis_broken_server config:type="boolean">true</nis_broken_server>
<nis_by_dhcp config:type="boolean">false</nis_by_dhcp>

4.7.3. (X)Inetd

40

<nis_domain>test.com</nis_domain>
<nis_local_only config:type="boolean">true</nis_local_only>
<nis_options></nis_options>
<nis_other_domains config:type="list">

<nis_other_domain>
<nis_broadcast config:type="boolean">false</nis_broadcast>
<nis_domain>domain.com</nis_domain>
<nis_servers config:type="list">
<nis_server>10.10.0.1</nis_server>

</nis_servers>
</nis_other_domain>

</nis_other_domains>
<nis_servers config:type="list">

<nis_server>192.168.1.1</nis_server>
</nis_servers>
<start_autofs config:type="boolean">true</start_autofs>
<start_nis config:type="boolean">true</start_nis>

</nis>
...

4.7.5. LDAP client
The installed machine can be set up as an > LDAP client to authenticate users with an OpenLDAP;
server. Required data are the name of the search base (base DN, e.g, dc=mydomain,dc=com) and the
IP address of the LDAP server (e.g., 10.20.0.2).

If LDAP is activated, NSS and PAM will be configured accordingly to use LDAP for user authentic-
ation.

Example 4.30. Network configuration: LDAP client

...
<ldap>
<ldap_domain> dc=mydomain,dc=com</ldap_domain>
<ldap_server>10.10.0.1</ldap_server>
<ldap_tls config:type="boolean">true</ldap_tls>
<ldap_v2 config:type="boolean">true</ldap_v2>
<pam_password>crypt</pam_password>
<start_ldap config:type="boolean">true</start_ldap>

</ldap>
...

4.7.6. NFS Client and Server
Configuration of a system as an NFS client or an NFS server is possible and can be done using the
configuration system. The following example shows how both NFS client and server can be con-
figured.

Example 4.31. Network configuration: NFS client

...
<nfs config:type="list">
<nfs_entry>

<mount_point>/home</mount_point>
<nfs_options>defaults</nfs_options>
<server_path>192.168.1.1:/home</server_path>

</nfs_entry>
</nfs>

...

4.7.5. LDAP client

41

Example 4.32. Network configuration: NFS Server

....
<nfs_server>
<nfs_exports config:type="list">

<nfs_export>
<allowed config:type="list">
<allowed_clients>*(ro,root_squash,sync)</allowed_clients>

</allowed>
<mountpoint>/home</mountpoint>

</nfs_export>
<nfs_export>
<allowed config:type="list">
<allowed_clients>*(ro,root_squash,sync)</allowed_clients>

</allowed>
<mountpoint>/work</mountpoint>

</nfs_export>
</nfs_exports>
<start_nfsserver config:type="boolean">true</start_nfsserver>

</nfs_server>
....

4.7.7. NTP Client
Select whether to start the NTP daemon when booting the system. The NTP daemon resolves host
names when initializing. The first synchronization of the clock is performed before the NTP daemon
is started. To use this host for initial synchronization configure the property initial_sync.

To run NTP daemon in chroot jail, set start_in_chroot. Starting any daemon in a chroot jail is more
secure and strongly recommended. To adjust NTP servers, peers, local clocks, and NTP broadcast-
ing, add the appropriate entry to the control file. an example of various configuration options is
shown below.

Example 4.33. Network configuration: NTP Client

<?xml version="1.0"?>
<!DOCTYPE profile SYSTEM "/usr/share/autoinstall/dtd/profile.dtd">
<profile xmlns="http://www.suse.com/1.0/yast2ns" xmlns:config="http://www.suse.com/1.0/configns">

<ntp-client>
<configure_dhcp config:type="boolean">false</configure_dhcp>
<peers config:type="list">

<peer>
<address>ntp1.example.com</address>
<initial_sync config:type="boolean">true</initial_sync>
<options></options>
<type>server</type>

</peer>
</peers>
<start_at_boot config:type="boolean">true</start_at_boot>
<start_in_chroot config:type="boolean">true</start_in_chroot>

</ntp-client>
</profile>

4.8. Mail Configuration (Sendmail or Postfix)
For the mail configuration of the client this module lets you create a detailed mail configuration.
The module contains various options and it is recommended to use it at least for the initial configur-
ation.

Example 4.34. Mail Configuration

4.7.7. NTP Client

42

...
<mail>
<aliases config:type="list">

<alias>
<alias>root</alias>
<comment></comment>
<destinations>foo</destinations>

</alias>
<alias>
<alias>test</alias>
<comment></comment>
<destinations>foo</destinations>

</alias>
</aliases>
<connection_type config:type="symbol">permanent</connection_type>
<fetchmail config:type="list">

<fetchmail_entry>
<local_user>foo</local_user>
<password>bar</password>
<protocol>POP3</protocol>
<remote_user>foo</remote_user>
<server>pop.foo.com</server>

</fetchmail_entry>
<fetchmail_entry>
<local_user>test</local_user>
<password>bar</password>
<protocol>IMAP</protocol>
<remote_user>test</remote_user>
<server>blah.com</server>

</fetchmail_entry>
</fetchmail>
<from_header>test.com</from_header>
<listen_remote config:type="boolean">true</listen_remote>
<local_domains config:type="list">

<domains>test1.com</domains>
</local_domains>
<masquerade_other_domains config:type="list">

<domain>blah.com</domain>
</masquerade_other_domains>
<masquerade_users config:type="list">

<masquerade_user>
<address>joe@test.com</address>
<comment></comment>
<user>joeuser</user>

</masquerade_user>
<masquerade_user>
<address>bar@test.com</address>
<comment></comment>
<user>foo</user>

</masquerade_user>
</masquerade_users>
<mta config:type="symbol">postfix</mta>
<outgoing_mail_server>test.com</outgoing_mail_server>
<postfix_mda config:type="symbol">local</postfix_mda>
<smtp_auth config:type="list">

<listentry>
<password>bar</password>
<server>test.com</server>
<user>foo</user>

</listentry>
</smtp_auth>
<use_amavis config:type="boolean">true</use_amavis>
<virtual_users config:type="list">

<virtual_user>
<alias>test.com</alias>
<comment></comment>
<destinations>foo.com</destinations>

</virtual_user>
<virtual_user>
<alias>geek.com</alias>
<comment></comment>
<destinations>bar.com</destinations>

</virtual_user>
</virtual_users>

</mail>
...

4.9. Security settings
Using the features of this module, you will be able to change the local security settings on the target
system. The local security settings include the boot configuration, login settings, password settings,
user addition settings, and file permissions.

Configuring the security settings automatically corresponds to the Custom Settings in the security
module available in the running system which lets you create your own, customized configuration.

4.9. Security settings

43

Example 4.35. Security configuration

See the reference for the meaning and the possible values of the settings in the following example.

...
<security>

<console_shutdown>ignore</console_shutdown>
<cwd_in_root_path>no</cwd_in_root_path>
<displaymanager_remote_access>no</displaymanager_remote_access>
<fail_delay>3</fail_delay>
<faillog_enab>yes</faillog_enab>
<gid_max>60000</gid_max>
<gid_min>101</gid_min>
<kdm_shutdown>root</kdm_shutdown>
<lastlog_enab>yes</lastlog_enab>
<encryption>md5</encryption>
<obscure_checks_enab>no</obscure_checks_enab>
<pass_max_days>99999</pass_max_days>
<pass_max_len>8</pass_max_len>
<pass_min_days>1</pass_min_days>
<pass_min_len>6</pass_min_len>
<pass_warn_age>14</pass_warn_age>
<passwd_use_cracklib>yes</passwd_use_cracklib>
<permission_security>secure</permission_security>
<run_updatedb_as>nobody</run_updatedb_as>
<uid_max>60000</uid_max>
<uid_min>500</uid_min>

</security>
...

4.9.1. Password Settings Options
Change various password settings. These settings are mainly stored in the /etc/login.defs
file.

Use this resource to activate one of the encryption methods currently supported. If not set, DES is
configured.

DES, the Linux default method, works in all network environments, but it restricts you to passwords
no longer than eight characters. MD5 allows longer passwords, thus provides more security, but
some network protocols don't support this, and you may have problems with NIS. Blowfish is also
supported.

Additionally, you can setup the system to check for password plausibility and length etc.

4.9.2. Boot Settings
Use the security resource, you can change various boot settings.

• How to interpret Ctrl + Alt + Del

When someone at the console has pressed the CTRL + ALT + DEL key combination, the system
usually reboots. Sometimes it is desirable to ignore this event, for example, when the system
serves as both workstation and server.

• Shutdown behavior of KDM

Set who is allowed to shut down the machine from KDM.

4.9.3. Login Settings
Change various login settings. These settings are mainly stored in the '/etc/login.defs' file.

4.9.1. Password Settings Options

44

4.9.4. New user settings (useradd settings)
Set the minimum and maximum possible user ID and set the minimum and maximum possible
group ID.

4.10. Monitor and X11 Configuration
FIXME

Example 4.36. X11 and Monitor configuration

...
<x11>

<color_depth>16</color_depth>
<configure_x11 config:type="boolean">true</configure_x11>
<display_manager>kde</display_manager>
<enable_3d config:type="boolean">false</enable_3d>
<monitor>
<display>

<frequency config:type="integer">60</frequency>
<max_hsync config:type="integer">97</max_hsync>
<max_vsync config:type="integer">180</max_vsync>
<min_hsync config:type="integer">30</min_hsync>
<min_vsync config:type="integer">50</min_vsync>
<width config:type="integer">1024</width>

</display>
<monitor_device>G90F</monitor_device>
<monitor_vendor>VIEWSONIC</monitor_vendor>

</monitor>
<resolution>1600x1200,1280x1024,1024x768,800x600,640x480</resolution>
<window_manager>kdm</window_manager>

</x11>

...

4.11. Users
The root user and at least one normal user can be added during install using data supplied in the con-
trol file. User data and passwords (encrypted or in clear text) are part of the configure resource in
the control file.

At least the root user should be configured during auto-installation, which will insure you will be
able to login after installation is finished and of course it will insure nobody else can login into the
system (in case the password is not set).

The two users in the following example are added during system configuration.

Example 4.37. User configuration

...
<users config:type="list">

<user>
<username>root</username>
<user_password>password</user_password>
<encrypted config:type="boolean">true</encrypted>
<forename/>
<surname/>

</user>
<user>

<username>nashif</username>
<user_password>password</user_password>
<encrypted config:type="boolean">true</encrypted>
<forename>Anas</forename>
<surname>Nashif</surname>

</user>
</users>

...

4.10. Monitor and X11 Configuration

45

The last example shows the minimal information required for adding users. More options are avail-
able for a more customized user account management. The data in /etc/default/useradd is
used to determine the home directory of the user to be created in addition to other parameters.

4.12. Custom user scripts
By adding scripts to the auto-installation process you can customize the installation for your needs
and take control in different stages of the installation.

In the auto-installation process, four types of scripts can be executed and they will be described here
in order of "appearance" during the installation.

• pre-scripts (very early, before anything else really happened)

• chroot-scripts (after the package installation, before the first boot)

• post-scripts (during the first boot of the installed system, no services running)

• init-scripts (during the first boot of the installed system, all servies up and running)

4.12.1. Pre-Install Scripts
Executed before YaST2 does any real change to the system (Before partitioning and package install-
ation but after the hardware detection)

You can use the pre-script to modify your profile and let autoyast read it again. If you want to do
that, you can find your profile in "/tmp/profile/autoinst.xml". Do what you want to do with that file
and store the modified version in "/tmp/profile/modified.xml". Autoyast will read that modified
script then again after the pre-script is done.

With SUSE Linux 10.0 and all following versions it's possible to change the partitioning with fdisk
in your pre-script. With pre 10.0 versions of SUSE Linux (like SLES9), that was not possible.

Pre-Install Scripts with confirmation

Pre-scripts are executed at an early stage of the installation. This means if you have re-
quested to confirm the installation, the pre-scripts will be executed before the confirm-
ation screen shows up. (profile/install/general/mode/confirm)

The following elements must be between the <pre-scripts config:type="list"><script> ...
</script></pre-scripts> tags

Table 4.5. pre script XML representation

Element Description Comment

location you can define a location from
where the script gets fetched.
Locations can be the same like
for the profile (http,ftp,nfs,...).

<location>http://10.10.0.1/myPreScript.sh</location>

either <location> or <source>
must be defined

source the script itself. The source code Either <location> or <source>

4.12. Custom user scripts

46

Element Description Comment

of the script if you want so. En-
capsulated in a CDATA tag. If
you don't want to put the whole
shell script into the XML pro-
file, look at the location para-
meter.

<source>
<![CDATA[
echo "Testing the pre script" > /tmp/pre-script_out.txt
]]>
</source>

must be defined

interpreter the interpreter that must be used
for the script. Supported options
are shell and perl.

<interpreter>perl</interpreter>

optional (default is shell)

filename the filename of the script. It will
be stored in a temporary direct-
ory under /tmp/...

<filename>myPreScript5.sh</filename>

optional. The default is the type
of the script (pre-scripts) in this
case

feedback if this boolean is true, stdout
and stderr of the script will be
shown in a popup that the user
has to confirm via ok-button. If
stdout and stderr are empty, no
popup is shown and so no con-
firmation is needed.

<feedback config:type="boolean">true</feedback>

optional. The default is false.
This option was invented with
SL 10.1 / SLES10

debug if this is true, every single line
of a shell script is logged. Perl
scripts are run with warnings
turned on.

<debug config:type="boolean">true</debug>

optional. The default is true.
This option was invented with
SL 10.1 / SLES10

4.12.2. Chroot environment scripts
Chroot scripts are executed before the machine reboots for the first time. Actually chroot scripts are
two differnt kind of script with one name. You can execute chroot script before the installation ch-
roots into the installed system and configures the boot loader and you can execute a script after the
chroot into the installed system has happend (look at the "chrooted" parameter for that). Both types
of scripts are executed before yast2 boots for the first time.

The following elements must be between the <chroot-scripts config:type="list"><script> ...
</script></chroot-scripts> tags

Table 4.6. chroot script XML representation

Element Description Comment

location you can define a location from
where the script gets fetched.

either <location> or <source>
must be defined

4.12.2. Chroot environment scripts

47

Element Description Comment

Locations can be the same like
for the profile (http,ftp,nfs,...).

<location>http://10.10.0.1/myChrootScript.sh</location>

source the script itself. The source code
of the script if you want so. En-
capsulated in a CDATA tag. If
you don't want to put the whole
shell script into the XML pro-
file, look at the location para-
meter.

<source>
<![CDATA[
echo "Testing the chroot script" > /tmp/chroot_out.txt
]]>
</source>

either <location> or <source>
must be defined

chrooted this value can be true or false.
"False" means that the installed
system is still mounted at "/
mnt" and no chrooting has
happened till now. The boot-
loader is not installed too at that
stage. "True" means, we did a
chroot into /mnt, so we are now
in the installed system. The
bootloader is installed and if
you want to change anything in
the installed system, you don't
have to use the "/mnt/" prefix
anymore.

<chrooted config:type="boolean">true</chrooted>

optional (the default is false)

interpreter the interpreter that must be used
for the script. Supported options
are shell and perl.and if you are
in a chrooted=true condition,
you can use python too if it's in-
stalled.

<interpreter>perl</interpreter>

optional (default is shell)

filename the filename of the script. It will
be stored in a temporary direct-
ory under /tmp/...

<filename>myPreScript5.sh</filename>

optional. The default is the type
of the script (pre-scripts) in this
case

feedback if this boolean is true, stdout
and stderr of the script will be
shown in a popup that the user
has to confirm via ok-button. If
stdout and stderr are empty, no
popup is shown and so no con-
firmation is needed.

<feedback config:type="boolean">true</feedback>

optional. The default is false.
This option was invented with
SL 10.1 / SLES10

debug if this is true, every single line optional. The default is true.

4.12.2. Chroot environment scripts

48

Element Description Comment

of a shell script is logged. Perl
scripts are run with warnings
turned on.

<debug config:type="boolean">true</debug>

This option was invented with
SL 10.1 / SLES10

4.12.3. Post-Install Scripts
These scripts are executed after AutoYaST has completed the system configuration and after it has
booted the system for the first time.

Starting from SLES9, network is not available during post-installation script execution. To access
the network, network device has to be configured in the script.

It is possible to execute the post scripts in an earlier phase while the installation network is still up
and before AutoYaST configures the system. To run network enabled post scripts, the boolean prop-
erty network_needed has to be set to true.

The following elements must be between the <post-scripts config:type="list"><script> ...
</script></post-scripts> tags

Table 4.7. post script XML representation

Element Description Comment

location you can define a location from
where the script gets fetched.
Locations can be the same like
for the profile (http,ftp,nfs,...)
but then you need a running net-
work interface of course

<location>http://10.10.0.1/myPostScript.sh</location>

either <location> or <source>
must be defined

source the script itself. The source code
of the script if you want so. En-
capsulated in a CDATA tag. If
you don't want to put the whole
shell script into the XML pro-
file, look at the location para-
meter.

<source>
<![CDATA[
echo "Testing the chroot script" > /tmp/chroot_out.txt
]]>
</source>

either <location> or <source>
must be defined

network_needed this value can be true or false.
On "false" the script will run
after the yast modules like the
user configuration and
everything else are done. The
network is configured but still
not up and running. With this
value on "true", the script runs
before(!) all yast modules are
configured. So there is no local
user and no network is con-

optional (the default is false)

4.12.3. Post-Install Scripts

49

Element Description Comment

figured but the installation net-
work is still up and running (of
course only if you did a network
installation).

<network_needed config:type="boolean">true</network_needed>

interpreter the interpreter that must be used
for the script. Supported options
are shell, perl and python if it's
installed.

<interpreter>perl</interpreter>

optional (default is shell)

filename the filename of the script. It will
be stored in a temporary direct-
ory under /tmp/...

<filename>myPostScript5.sh</filename>

optional. The default is the type
of the script (post-scripts) in this
case

feedback if this boolean is true, stdout
and stderr of the script will be
shown in a popup that the user
has to confirm via ok-button. If
stdout and stderr are empty, no
popup is shown and so no con-
firmation is needed.

<feedback config:type="boolean">true</feedback>

optional. The default is false.
This option was invented with
SL 10.1 / SLES10

debug if this is true, every single line
of a shell script is logged. Perl
scripts are run with warnings
turned on.

<debug config:type="boolean">true</debug>

optional. The default is true.
This option was invented with
SL 10.1 / SLES10

4.12.4. Init Scripts

Note

Available starting from SLES9 only.

These scripts are executed during the initial boot process and after YaST2 has finished. The final
scripts are executed using a special init.d script which is executed only once. The final scripts are
executed toward the end of the boot process and after network has been intialized.

Init scripts are configured using the tag init-scripts and are run using the special purpose init.d script
/etc/init.d/autoyast.

The following elements must be between the <init-scripts config:type="list"><script> ...
</script></init-scripts> tags

Table 4.8. init script XML representation

4.12.4. Init Scripts

50

Element Description Comment

location you can define a location from
where the script gets fetched.
Locations can be the same like
for the profile (http,ftp,nfs,...)
but then you need a running net-
work interface of course

<location>http://10.10.0.1/myInitScript.sh</location>

either <location> or <source>
must be defined

source the script itself. The source code
of the script if you want so. En-
capsulated in a CDATA tag. If
you don't want to put the whole
shell script into the XML pro-
file, look at the location para-
meter.

<source>
<![CDATA[
echo "Testing the init script" > /tmp/init_out.txt
]]>
</source>

either <location> or <source>
must be defined

filename the filename of the script. It will
be stored in a temporary direct-
ory under /tmp/...

<filename>mynitScript5.sh</filename>

optional. The default is the type
of the script (init-scripts) in this
case

When added to the control file manually, the scripts have to be included in a CDATA element to
avoid confusion with the file syntax and other tags defined in the control file.

4.12.5. Script example

Example 4.38. Post script configuration

<?xml version="1.0"?>
<!DOCTYPE profile SYSTEM "/usr/share/autoinstall/dtd/profile.dtd">
<profile xmlns="http://www.suse.com/1.0/yast2ns" xmlns:config="http://www.suse.com/1.0/configns">

<scripts>
<chroot-scripts config:type="list">

<script>
<chrooted config:type="boolean">true</chrooted>
<filename>chroot.sh</filename>
<interpreter>shell</interpreter>
<source><![CDATA[

#!/bin/sh
echo "Testing chroot (chrooted) scripts"
ls
]]>

</source>
</script>
<script>

<filename>chroot.sh</filename>
<interpreter>shell</interpreter>
<source><![CDATA[

#!/bin/sh
echo "Testing chroot scripts"
df
cd /mnt
ls
]]>

</source>
</script>

</chroot-scripts>
<post-scripts config:type="list">

<script>
<filename>post.sh</filename>
<interpreter>shell</interpreter>
<source><![CDATA[

#!/bin/sh

4.12.5. Script example

51

echo "Running Post-install script"
/etc/init.d/portmap start
mount -a 192.168.1.1:/local /mnt
cp /mnt/test.sh /tmp
umount /mnt
]]>

</source>
</script>
<script>

<filename>post.pl</filename>
<interpreter>perl</interpreter>
<source><![CDATA[

#!/usr/bin/perl
print "Running Post-install script";

]]>
</source>

</script>
</post-scripts>
<pre-scripts config:type="list">

<script>
<interpreter>shell</interpreter>
<location>http://192.168.1.1/profiles/scripts/prescripts.sh</location>

</script>
<script>

<filename>pre.sh</filename>
<interpreter>shell</interpreter>
<source><![CDATA[

#!/bin/sh
echo "Running pre-install script"
]]>

</source>
</script>

</pre-scripts>
</scripts>

</profile>

After installation is finished, the scripts and the output logs can be found in the directory /
var/adm/autoinstall. The scripts are located in scripts and the output logs of the scripts
are located in the log directory.

The log is the output resulting when executing the shell scripts using the following command:

/bin/sh -x <script_name> 2&> /var/adm/autoinstall/logs/<script_name>.log

4.13. System variables (Sysconfig)
Using the sysconfig resource, it is possible to define configuration variables in the sysconfig reposit-
ory (/etc/sysconfig) directly. Sysconfig variables, offer the possibility to fine-tune many sys-
tem components and environment variables exactly to your needs.

Refer to the handbook for more details about the many configuration options available in /
etc/sysconfig

The following example shows how a variable can be set using the sysconfig resource.

To configure a variable in a sysconfig file, the following syntax can be used:

Example 4.39. Sysconfig Configuration

<sysconfig config:type="list" >
<sysconfig_entry>
<sysconfig_key>XNTPD_INITIAL_NTPDATE</sysconfig_key>
<sysconfig_path>/etc/sysconfig/xntp</sysconfig_path>
<sysconfig_value>ntp.host.com</sysconfig_value>

</sysconfig_entry>
<sysconfig_entry>
<sysconfig_key>HTTP_PROXY</sysconfig_key>
<sysconfig_path>/etc/sysconfig/proxy</sysconfig_path>

4.13. System variables (Sysconfig)

52

<sysconfig_value>proxy.host.com:3128</sysconfig_value>
</sysconfig_entry>
<sysconfig_entry>
<sysconfig_key>FTP_PROXY</sysconfig_key>
<sysconfig_path>/etc/sysconfig/proxy</sysconfig_path>
<sysconfig_value>proxy.host.com:3128</sysconfig_value>
</sysconfig_entry>

</sysconfig>

Both relative and absolute pathes can be provided. If no absolute path is given, it is treated as a sy-
sconfig file under the /etc/sysconfig directory.

4.14. Adding complete configurations
For many applications and services you might have prepared a configuration file which should be
copied in a complete form to some location in the installed system. This is for example if you are in-
stalling a web server and have a ready to go server configuration file (httpd.conf).

Using this resource, you can embed the file into the control file by specifying the final path on the
installed system. YaST2 will copy this file to the specified location.

Example 4.40. Dumping files into the installed system

<files config:type="list">
<config_file>

<file_path>/etc/httpd/httpd.conf</file_path>
<file_contents>

<![CDATA[
some content
]]>

</file_contents>
</config_file>

</files>

A more advanced example is shown below. This configuration will create a file using the content
supplied in file_contents and will change the permissions and ownership of the file. After the file
has been copied to the system, a script is executed which can be used to manipulate the file and pre-
pare it for the environment of the client.

Example 4.41. Dumping files into the installed system

<files config:type="list">
<config_file>

<file_path>/etc/someconf.conf</file_path>
<file_contents>

<![CDATA[
some content
]]>

</file_contents>
<file_owner>nashif.users</file_owner>
<file_permissions>444</file_permissions>
<file_script>
<interpreter>shell</interpreter>
<source>

<![CDATA[
#!/bin/sh

echo "Testing file scripts" >> /etc/someconf.conf
df
cd /mnt
ls
]]>

4.14. Adding complete configurations

53

</source>
</file_script>

</config_file>
</files>

4.15. Miscellaneous hardware and system compon-
ents

In addition to the core component configuration, like network authentication and security, AutoY-
aST2 offers a wide range of hardware and system configuration which is available by default on any
system installed manually and in an interactive way. For example, it is possible to configure print-
ers, sound devices, TV cards and any other hardware components which have a module within
YaST2.

Any new configuration options that will be added to YaST2 will be automatically available as an
auto-installation resource.

4.15.1. Printer
Although Printer configuration, like other configurations can be done manually, it is recommended
to use the Configuration System to create such a configuration because of the complexity and the
range of options offered by such modules.

Using the configuration system will guarantee that the options provided are consistent. The follow-
ing is an example of a configuration section which was created using the configuration system.

Example 4.42. Printer configuration

....
<printer>
<default>lp</default>
<printcap config:type="list">

<printcap_entry>
<cups-state>void</cups-state>
<ff config:type="boolean">true</ff>
<info></info>
<location></location>
<lprng-state>changed</lprng-state>
<name>lp</name>
<options>
<job-sheets>none,none</job-sheets>

</options>
<raw config:type="boolean">true</raw>
<type>yast2</type>
<uri>parallel:/dev/lp0</uri>

</printcap_entry>
</printcap>

</printer>
....

4.15.2. Sound devices
An example of sound configuration created using the configuration system is shown below.

Example 4.43. Sound configuration

....
<sound>
<autoinstall config:type="boolean">true</autoinstall>

4.15. Miscellaneous hardware and
system components

54

<modules_conf config:type="list">
<module_conf>
<alias>snd-card-0</alias>
<model>M5451, ALI</model>
<module>snd-ali5451</module>
<options>
<snd_enable>1</snd_enable>
<snd_index>0</snd_index>
<snd_pcm_channels>32</snd_pcm_channels>

</options>
</module_conf>

</modules_conf>
<volume_settings config:type="list">

<listentry>
<Master config:type="integer">75</Master>

</listentry>
</volume_settings>

</sound>

....

4.16. Ask the user for values during installation
This feature is only available since SUSE Linux 10.1 and SLES10.

You have the option to let the user decide the values of specific parts of the profile during the in-
stallation. If you use that feature, a popup will come up during the installation and will ask the user
to enter a specific part of the profile. So if you want a full auto installation but you want the user to
set the password of the local account, you can do this via the ask directive in the profile.

The following elements must be between the <ask-list config:type="list"><ask> ...
</ask></ask-list> tags in the <general> section.

Table 4.9. XML representation

Element Description Comment

question The question you want to ask
the user.

<question>Enter the LDAP server</question>

The default value is the path to
the element (the path often
looks strange, so I recommend
to enter a question)

default you can set a pre-selection for
the user. A textentry will be
filled out with this value, a
checkbox will be "true" or
"false" and a selection will have
this default "value" pre-se-
lected.

<default>dc=suse,dc=de</default>

optional

help An optional helptext that is
shown on the left side of the
question.

<help>Enter the LDAP server address.</help>

optional

title An optional title that is shown
above the question.

<title>LDAP server</title>

optional

type the type of the element you optional. The defaul is string. If

4.16. Ask the user for values during
installation

55

Element Description Comment

want to change. Possible values
are "symbol","boolean","string"
and "integer". The filesystem in
the partition section is a symbol,
while the "encrypted" element
in the user configuration is a
boolean. You can see the type
of that element if you look in
your profile at the con-
fig:type="...." attribute.

<type>symbol</type>

type is "symbol" you must
provide the selection element
too (see below)

password if this boolean is set to "true", a
password dialog pops up instead
of a simple text entry. Setting
this to "true" makes only sense
if "type" is string.

<password config:type="boolean">true</password>

optional. The default is "false"

path The path to the element in the
profile. It's a comma seperated
list of elements that describes
the path to the element you
want to change. For example,
the ldap server element can be
found in the profile in the
<ldap><ldap_server> section.
So if you want to change that
value, you have to set the path
to "ldap,ldap_server". If you
want to change the password of
the first user in the profile, you
have to set the path to
"users,0,user_password". The
"0" indicates the first user in the
<users config:type="list"> list
of users in the profile.

<path>networking,dns,hostname</path>

this information is optional but
you should at least provie path
or file

file (available since SLES10
SP1 and SL 10.2)

you can store the answer to a
question in a file, to use it in
one of your scripts later.

<file>/tmp/answer_hostname</file>

this information is optional but
you should at least provie path
or file

password if this boolean is set to "true", a
password dialog pops up instead
of a simple text entry. Setting
this to "true" makes only sense
if "type" is string.

<password config:type="boolean">true</password>

optional. The default is "false"

stage stage configures the installation
stage where the question pops
up. You can set this value to
"cont" or "initial". "initial"
means the popup comes up very

optional. The default is "initial"

4.16. Ask the user for values during
installation

56

Element Description Comment

early in the installation, short
after the pre-script has run.
"cont" means, that the dialog
with the question comes after
the first reboot, when the sys-
tem boots for the very first time.
Questions you answer during
the "inital" stage, will write
their answer into the profile on
the harddisk. You should know
that if you enter cleartext pass-
words during "initial". Of
course it does not make sense to
ask for a filesystem to use in the
"cont" phase. The harddisk is
already partitioned at that stage
and the question will have no
effect.

<stage>cont</stage>

selection the selection element contains a
list of <entry> elements. Each
entry represents a possible op-
tion for the user to choose. So
the user can't enter a value in a
textfield, but he can choose
from a list of values.

<selection config:type="list">
<entry>
<value>

reiser
</value>
<label>

Reiser Filesystem
</label>

</entry>
<entry>
<value>

ext3
</value>
<label>

Extended3 Filesystem
</label>

</entry>
</selection>

optional for type=string, not
possible for type=boolean and a
must have for type=symbol

Below you can see an example of the usage of the "ask" feature.

<general>
<ask-list config:type="list">

<ask>
<path>ldap,ldap_server</path>
<stage>cont</stage>
<help>choose your server depending on your department</help>
<selection config:type="list">

<entry>
<value>ldap1.mydom.de</value>
<label>LDAP for development</label>

</entry>
<entry>

<value>ldap2.mydom.de</value>
<label>LDAP for sales</label>

</entry>
</selection>
<default>ldap2.mydom.de</default>

</ask>
<ask>

<path>networking,dns,hostname</path>
<question>Enter Hostname</question>
<stage>initial</stage>

4.16. Ask the user for values during
installation

57

<default>enter your hostname here</default>
</ask>
<ask>

<path>partitioning,0,partitions,0,filesystem</path>
<question>Filesystem</question>
<type>symbol</type>
<selection config:type="list">

<entry>
<value config:type="symbol">reiser</value>
<label>default Filesystem (recommended)</label>

</entry>
<entry>

<value config:type="symbol">ext3</value>
<label>Fallback Filesystem</label>

</entry>
</selection>

</ask>
</ask-list>
...

</general>

4.16. Ask the user for values during
installation

58

Chapter 5. Network Based Installation
The installation method using AutoYaST provides a way to automatically and identically install
groups of systems. The first step when preparing AutoYaST installations is deciding how you want
the systems at your site to be installed. For example, the following scenario would be ideal to set up
and perform automated installations:

• You need to install SuSE Linux on 50 new systems.

• The development department owns 30 out of the 50 new dual processor and SCSI systems, and
its systems must be installed as clients with development software.

• The sales department owns 20 out of the 50 new, uni-processor IDE based systems and its sys-
tems must be installed as clients with end user software and office tools.

Prerequisites:

• A boot server on the same Ethernet segment

• An install server with the SuSE Linux OS

• An AutoYaST configuration server that defines rules and profiles.

5.1. Configuration Server
A configuration repository holds the control files for multiple machines. The control files can have
any file names, which have to specified at the boot time of a client. To avoid supplying the profile
name for every client, you can only define the directory of the control files. If a directory is spe-
cified, then the client tries to load a file with a name matching it's IP address in HEX mode. This has
the advantage that you will be dealing with consistent file names rather than IPs as file names which
might lead to some confusion.

The configuration repository is the same directory you have to define if you are using the configura-
tion system for creating control files.

5.1.1. HTTP Repository
To be able to use the HTTP protocol to retrieve control file while auto-installing, you need a work-
ing HTTP server on the server side. Install Apache or your favorite web server and enable it using
YaST2. Normally the the web server root directory resides in /srv/www/htdocs so you need to
create a subdirectory below the root directory of the web server which will be your configuration re-
pository.

5.1.2. NFS Repository
Create a directory and make it available via NFS to the clients by exporting it. This directory may
for example be in the same place where you have copied the CDs. (i.e. /usr/local/SuSE)

5.1.3. TFTP Repository
By default the TFTP directory is available under /tftpboot which can also contain boot images
if you are booting over network. Do not forget to enable TFTP in the Inetd configuration file (/
etc/inetd.conf). Inetd configuration can be done using YaST2.

59

60

Chapter 6. Rules and Classes
6.1. Rule based auto-installation

Rules offer the possibility to configure a system depending on system attributes by merging multiple
control file during installation. The rules based installation is controlled by a rules file.

The rules file is an XML based file that contains rules for each group of systems (or single systems)
that you want to automatically install. A set of rules distinguish a group of systems based on one or
more system attributes, after passing all rules, it links each group of rules to a profile. Both the rules
file and the profiles must be located in a pre-defined and accessible location.

The rules file is retrieved only if no specific control is supplied using the autoyast keyword. For ex-
ample, if the following is used, the rules file wont be evaluated:

autoyast=http://10.10.0.1/profile/test.xml

Figure 6.1. Rules

If more than one rule apply, the final profile for each group is generated on the fly using a merge
script. The merging process is based on the order of the rules and later rules override configuration
data in earlier rules.

The use of a rules file is optional. If the rules file is not found, system installation proceeds in the
classic way by just using the supplied profile or by searching for the profile depending on the MAC
or the IP address of the system.

6.1.1. Rules File explained

Example 6.1. Simple rules file

The following simple example illustrates how the rules file is used to retrieve the configuration for a
client with known hardware.

<?xml version="1.0"?>
<!DOCTYPE autoinstall SYSTEM "/usr/share/autoinstall/dtd/rules.dtd">
<autoinstall xmlns="http://www.suse.com/1.0/yast2ns" xmlns:config="http://www.suse.com/1.0/configns">
<rules config:type="list">

<rule>
<disksize>

<match>/dev/hdc 1000</match>
<match_type>greater</match_type>

</disksize>
<result>

<profile>machine1.xml</profile>
<continue config:type="boolean">false</continue>

</result>
</rule>
<rule>

<disksize>
<match>/dev/hda 1000</match>
<match_type>greater</match_type>

</disksize>
<result>

<profile>machine2.xml</profile>
<continue config:type="boolean">false</continue>

</result>
</rule>

</rules>
</autoinstall>

61

The last example defines 2 rules and provides a different profile for every rule. The rule used in this
case is disksize. After parsing the rules file, YaST2 attempts to match the system being installed to
the rules in the rules.xml file in the following order: first rule through the last rule. A rule match
occurs when the system being installed matches all of the system attributes defined in the rule. As
soon as a system matches a rule, the result resource is added to the stack of profiles AutoYaST will
be using to create the final profile. The continue property tells AutoYaST if it should continue with
other rules or not after a match has been found.

If the first rule does not match, next rule in the list is examined until a match is found.

Using the disksize attribute, you can provide different configurations for different hard drives with
different size. First rule checks if the device /dev/hdc is available and if it is greater than 1 GB in
size using the match property.

A rule must have at least one attribute to be matched. If you need to check more attributes, i.e.
memory or architectures, you can add more attributes in the rule resource as shown in the next ex-
ample.

Example 6.2. Simple rules file

The following simple example illustrates how the rules file is used to retrieve the configuration for a
client with known hardware.

<?xml version="1.0"?>
<!DOCTYPE autoinstall SYSTEM "/usr/share/autoinstall/dtd/rules.dtd">
<autoinstall xmlns="http://www.suse.com/1.0/yast2ns" xmlns:config="http://www.suse.com/1.0/configns">

<rules config:type="list">
<rule>

<disksize>
<match>/dev/hdc 1000</match>
<match_type>greater</match_type>

</disksize>
<memsize>

<match>1000</match>
<match_type>greater</match_type>

</memsize>
<result>

<profile>machine1.xml</profile>
<continue config:type="boolean">false</continue>

</result>
</rule>
<rule>

<disksize>
<match>/dev/hda 1000</match>
<match_type>greater</match_type>

</disksize>
<memsize>

<match>256</match>
<match_type>greater</match_type>

</memsize>
<result>

<profile>machine2.xml</profile>
<continue config:type="boolean">false</continue>

</result>
</rule>

</rules>
</autoinstall>

The rules directory must be located in the same referenced directory used with the autoyast keyword
on boot time, so if the client was booted using autoyast=http://10.10.0.1/profiles/, AutoYaST will
search for the rules file in http://10.10.0.1/profiles/rules/rules.xml.

6.1.2. Custom Rules
If the attributes autoyast provides for rules are not enough for you, you can use custom rules. Cus-
tom rules are more or less a shell script you have to write has and whose output on STDOUT is be-
ing used to know which autoyast profile should be fetched. STDERR will be ignored.

Here is an example for the use of a custom rules:

6.1.2. Custom Rules

62

<rule>
<custom1>

<script>
if grep -i intel /proc/cpuinfo > /dev/null; then
echo -n "intel"
else
echo -n "non_intel"
fi;

</script>
<match>*</match>
<match_type>exact</match_type>

</custom1>
<result>

<profile>@custom1@.xml</profile>
<continue config:type="boolean">true</continue>

</result>
</rule>

The script in this rule can echo either "intel" or "non_intel" to STDOUT (the output of the grep
command must be directed to /dev/null in this case). Autoyast will catch that output and will fetch a
file with the name "intel.xml" or "non_intel.xml". This file can contain the autoyast profile part for
the software selection for example, in the case you want to do a different software selection on intel
hardware than on others. So the output of the rule script will be filled between the two '@' charac-
ters, to determine the filename of the profile to fetch.

The number of custom rules is limited to 5. So you can use custom1 to custom5.

6.1.3. Match Types for rules
you can have five different match_types:

• exact - which is the default

• greater

• lower

• range

• regex (available since 10.1 and SLES10)

"greater" and "lower" can be used for memsize or totaldisk for example. They can match only on
rules which return an integer value. A range is only possible for integer values too and has the form
of "value1-value2", for example "512-1024". regex can be used to match substrings like "ntel" will
match "Intel","intel" and "intelligent".

6.1.4. Combine Attributes
It's possible to combine multiple attributes via a logical operator. So it's possible to let a rule match
if disksize is greater than 1GB or memsize is exact 512MB (well, not the best example maybe).

You can do that with the "operator" element in the rules.xml file. Here is an example:

<rule>
<disksize>

<match>/dev/hda 1000</match>
<match_type>greater</match_type>

</disksize>
<memsize>

<match>256</match>
<match_type>greater</match_type>

</memsize>
<result>

<profile>machine2.xml</profile>

6.1.3. Match Types for rules

63

<continue config:type="boolean">false</continue>
</result>
<operator>or</operator>

</rule>

Just "and" and "or" are possible operators and the default operator is "and".

6.1.5. Rules file structure
The rules.xml file must have:

• At least one rule

• It must have the name rules.xml

• It must be located in the directory rules in the profile repository

• At least one attribute to match in the rule

6.1.6. Predefined System Attributes
The following table lists the predefined system attributes you can match in the rules file.

If you are unsure about a value on your system, start an autoinstallation. If the proposal shows up,
switch to the console via CTRL+ALT+F2 and run

y2base ayast_probe ncurses

. It might help to to turn the confirmation on for this, so that the installation does not start in the
background while you are watching the values. The textbox with the values is scrollable.

Table 6.1. System Attributes

Attribute Values Description

hostaddress IP address of the host This attribute must always
match exactly

hostname The name of the host This attribute must always
match exactly

domain Domain name of host This attribute must always
match exactly

installed_product The name of the product that is
getting installed. For example
"SUSE LINUX"

This attribute must always
match exactly

installed_product_version The version of the product that
is getting installed. For example
"9.3"

This attribute must always
match exactly

network network address of host This attribute must always
match exactly

mac MAC address of host This attribute must always
match exactly. (MAC addresses
to be matched should be in the
form 0080C8F6484C

linux Number of installed Linux par-
titions on the system

This attribute can be 0 or more

others Number of installed non-Linux
partitions on the system

This attribute can be 0 or more

6.1.5. Rules file structure

64

Attribute Values Description

xserver X Server needed for graphic ad-
apter

This attribute must always
match exactly

memsize Memory available on host in
MByes

All match types are available

totaldisk Total disk space available on
host in MBytes

All match types are available

haspcmica System has PCMCIA (i.e
Laptops)

Exact match required, 1 for
available PCMCIA or 0 for
none

hostid Hex representation of IP ad-
dress

Exact match required

arch Architecture of host Exact match required

karch Kernel Architecture of host (i.e.
SMP kernel, Athlon Kernel)

Exact match required

disksize Drive device and size All match types are available

product The hardware product name as
specified in SMBIOS

Exact match required

product_vendor The hardware vendor as spe-
cified in SMBIOS

Exact match required

board The system board name as spe-
cified in SMBIOS

Exact match required

board_vendor The system board vendor as
specified in SMBIOS

Exact match required

custom1-5 Custom rules using shell scripts All match types are available

6.2. Classes
You can assign a system to different classes which can be defined in the control file. Unlike rules,
classes have to be configured in the control file and represent a configuration which is typical for a
group of systems.

Here is an example of a class definition:

<classes config:type="list">
<class>

<class_name>TrainingRoom</class_name>
<configuration>Software.xml</configuration>

</class>
</classes>

The file Software.xml must be in the directory "classes/TrainingRoom/" then and it will get fetched
from the same place like the autoyast profile and the rules were fetched from.

If you have multiple kind of profiles and those profiles share parts, it's recommended to use classes
for that. You just have to change the class and all profiles using that class are fixed too. By the way,
you can reach something similar by using XIncludes.

Using the configuration management system, you can define a set of classes. The class definition
consists of the following variable for each class:

• Name: Class name

• Descriptions: Class description

6.2. Classes

65

• Order: Order (or priority) of the class in the stack of migration

Figure 6.2. Defining Classes

You can create as many classes as you need, however it is recommended to keep the set of classes as
small as possible to keep the configuration system concise. As an example, the following set of
classes can be used:

• site: Classes describing a physical location or site.

• machine: Classes describing a type of machine or make

• role: Classes describing the function of the machine to be installed

• group: Classes describing a department or a group within a site or a location.

A file saved in a class directory can have the same syntax and format as a regular control file but
represents a subset of the configuration. For example, to create a new control file for a special com-
puter with a specific network interface, only the resource in the control file, which controls the con-
figuration of the network is needed. Having multiple network types, you can merge the one needed
for a special type of hardware with other class files and create a new control file which suits the sys-
tem being installed.

6.3. Mixing Rules and Classes
It is possible to mix rules and classes during an auto-installation session. For example you can
identify a system using rules which contain class definitions in them. The process is described in the
figures “Rules Retrieval Process”.

After retrieving the rules and merging them, the generated control file is parsed and the presence of
class definitions is checked. If classes are defined, then the class files are retrieved from the original
repository and a new merge process is initiated.

6.4. The merging process of Rules and Classes
With classes and with rules, multiple XML files get merged to one resulting XML file. This process
of merging is often confusing for people, because it behaves different than one would expect.

Let's take a look at two XML parts that we want to merge:

<partitioning config:type="list">
<drive>

<partitions config:type="list">
<partition>

<filesystem config:type="symbol">swap</filesystem>
<format config:type="boolean">true</format>
<mount>swap</mount>
<partition_id config:type="integer">130</partition_id>
<size>2000mb</size>

</partition>
<partition>

<filesystem config:type="symbol">xfs</filesystem>
<partition_type>primary</partition_type>
<size>4Gb</size>
<mount>/data</mount>

</partition>
</partitions>

</drive>
</partitioning>

6.3. Mixing Rules and Classes

66

<partitioning config:type="list">
<drive>

<initialize config:type="boolean">false</initialize>
<partitions config:type="list">

<partition>
<format config:type="boolean">true</format>
<filesystem config:type="symbol">xfs</filesystem>
<mount>/</mount>
<partition_id config:type="integer">131</partition_id>
<partition_type>primary</partition_type>
<size>max</size>

</partition>
</partitions>
<use>all</use>

</drive>
</partitioning>

What you would expect is, that you'll end up in a profile with 3 partitions. That is not the case.
You'll end up with two partitions and the first partition is a mixup of the swap and the root partition.
Stuff that is configured in both partitions, like mount or size, will be used from the second file. Stuff
that only exists in the first or second partition, will be copied to the merged partition too.

Sometimes this is what you want, but sometimes this is not what you want. Actually, in my example
above, this is both. You don't want a second drive right? You want the two drives to be merged into
one but for partitions you want three seperate ones. So how can you achieve what you want? In this
example, how do you get three partitions but still one drive?

Note
For SLES9/SUSE Linux 10.0 and earlier versions

you can only use a trick. It's not official supported by autoyast and more a workaround than a nice
solution. For each partition in one file, add an attribute to the partition like this:

<partition dontmerge="1">
...
</partitions>

The trick is, that the merge script will not detect the partitions as the same element type because of
the new attribute. If you have more files, it might be needed to to add more attributes like dont-
merge="2".

Note
For SLES10/SUSE Linux 10.1 and later

you can use the dont_merge element in the rules or classes file like this:

<classes config:type="list">
<class>

<class_name>swap</class_name>
<configuration>largeswap.xml</configuration>
<dont_merge config:type="list">

<element>partition</element>
</dont_merge>

</class>
</classes>

<rule>
<board_vendor>

<match>ntel</match>
<match_type>regex</match_type>

</board_vendor>
<result>

<profile>classes/largeswap.xml</profile>
<continue config:type="boolean">true</continue>
<dont_merge config:type="list">
<element>partition</element>

</dont_merge>

6.4. The merging process of Rules
and Classes

67

</result>
</rule>

6.4. The merging process of Rules
and Classes

68

Chapter 7. The Auto-Installation
Process
7.1. Introduction

After the system has booted and the control file has been retrieved, YaST2 performs configuration
of the system according to the information provided in the control file. All the configuration is sum-
marized in a window that is shown by default and should be deactivated if a full automatic installa-
tion is needed.

When YaST2 has reached the point where the summary of the configuration is shown, YaST2 has
only probed hardware and prepared the system for auto-installation, thus, nothing has been changed
in the system yet, so that in case of any error, the process still can be aborted.

A system should be automatically installable without the need to have any graphic adaptor or monit-
or. Having a monitor attached to the client machine is nevertheless recommended to follow the pro-
cess and to get feedback in case of any errors. Choosing between the Qt and the Ncurses interfaces
is possible. For headless clients, system messages can be monitored using the serial console.

7.1.1. X11 Interface
This is the default interface while auto-installing. No special variables are required to activate it.

7.1.2. Serial console
You can start installing a system using the serial console by adding the keyword console (i.e. con-
sole=ttyS0) to the command line of the kernel. This will start linuxrc in console mode and later in
the process, YaST2 also is started in serial console mode.

7.1.3. Text based YaST2-Installation
This option can also be activated on the command line. This will start YaST2 in Ncurses mode. To
start YaST2 in text mode, add textmode=1 on the command line.

Starting YaST2 in text mode is recommended when installing a client with less than 64 MB or when
X11 is not being configured at all, especially on headless machines.

7.2. Choosing the right Boot Medium
There are different methods for booting the client. The computer can boot from its network interface
card (NIC) to receive the boot images via DHCP /TFTP or a suitable kernel as well as an initrd im-
age are loaded from a floppy or a boot-able CD-ROM.

7.2.1. Booting from a floppy
For testing/rescue purposes or because the NIC does not have a PROM or PXE you can build a boot
floppy to use with AutoYaST. Using a floppy to initiate an auto-install process is limited due to the
size of the data a floppy can hold. However, it is still possible to use floppies when auto-installing a
single, disconnected machine.

Floppies can be used to store the control file, especially when using the original SuSE CD-ROMs for
a single, disconnected machine. Using the kernel command line, you can specify the location of the
control file on the floppy.

Even without specifying any command line options, it is still possible to initiate the auto-install pro-
cess by placing a control file on a floppy with a special, pre-defined file name. (autoinst.xml)

69

YaST2 will check for autoinst.xml upon startup and if it was found it will switch from interact-
ive to automated installation.

7.2.2. Booting from CD-ROM
You can use the original SuSE CD-ROMs in combination with other media, i.e. with a floppy to
hold the control file or in combination with network where the control file can be located.

It is also possible to create customized CD-ROMs to hold only the package you need in addition to
the control file which also can be saved on the CD-ROM. This method requires creation of CD-
ROMs every time you wish to change the configuration though.

7.2.3. Booting via PXE over the network
Booting via PXE requires a DHCP and a TFTP server in your network. The computer will boot then
without a physical media like a boot floppy or CDROM.

Here is a small example of a "/srv/tftp/pxelinux.cfg/default" file:

default SLES9

install SLES9
label SLES9

kernel linux_sles9
append initrd=initrd_sles9 vga=0x0314 install=.... autoyast=... language=de_DE

boot harddisc
label hd·

LOCALBOOT 0

It's recommended to add the vga=... parameter with a valid value for graphical installations, to trig-
ger an installation with the frame buffer device instead of the vesa driver or ncurses mode.

Here is as a small example my "/etc/dhcp.conf" file:

option domain-name-servers 192.168.66.1;
default-lease-time 600;
max-lease-time 7200;
ddns-update-style none; ddns-updates off;
log-facility local7;
option grub-menufile code 150 = text;
option grub-menufile "(nd)/menu.lst";·
subnet 192.168.66.0 netmask 255.255.255.0 {

range 192.168.66.100 192.168.66.200;
PXE related stuff ...
#
"next-server" defines the tftp server which will·
serve the pxelinux image to the PXE clients.
next-server 192.168.66.1;
allow booting;
allow bootp;
option routers 192.168.66.1; # default gateway

#
"filename" specifies the pxelinux image on the tftp server·
which will be served to the PXE clients.
The configured tftp server on 192.168.100.1 runs in a·
"change-root jail" to /srv/tftpboot
filename "pxelinux.0";

}

A problem you might run into if you do installation via PXE is, that the installation will run into an
endless loop, because after the first reboot, the machine is doing PXE boot again and will restart the
installation instead of booting from harddisc for the second stage of the installation.

This problem can be solved in different ways. One way is to use a http server to provide the autoyast
profile and instead of a static profile, a CGI script on the webserver is run that provides the profile
and then changes the TFTP server configuration then for this special host, so that the next PXE boot
from that machine will be from harddisc by default.

Another way is to use autoyast to upload a new PXE boot configuration for that host. That is done
via autoyast profile like this:

7.2.2. Booting from CD-ROM

70

<pxe>
<pxe_localboot config:type="boolean">true</pxe_localboot>
<pxelinux-config>

DEFAULT linux
LABEL linux
localboot 0

</pxelinux-config>
<tftp-server>192.168.66.1</tftp-server>
<pxelinux-dir>/pxelinux.cfg</pxelinux-dir>

</pxe>

This will upload a new configuration for the actual machine to the tftp server short before the first
reboot happens. In most installations the TFTP daemon runs as user "nobody". You have to make
sure that that user has write permissions to the "pxelinux.cfg" directory if you use that mechanism.
So if your machine got the IP address "192.168.66.195" a file "C0A842C3" will be uploaded and if
the machine reboots and will get the same IP address via DHCP again, the new configuration will be
used that has the harddisc as a default boot media.

Of course this requires that the machine will get the same IP address again after the reboot and if
you want to do another autoinstallation for that machine, you have to remove the file from the TFTP
server.

7.3. Invoking the Auto-Installation process

7.3.1. Command line Options
Adding the command line variable autoyast will make linuxrc start in automated mode. Linuxrc
searches for a configuration file, which should be distinguished from the main control file in the fol-
lowing places:

• In the root directory of the initial ram-disk used for booting the system up

• In the root directory of the floppy

The configuration file used by linuxrc can have the following keywords (for a detailed description
of how linuxrc works and other keywords, see “Advanced Linuxrc Options”):

Table 7.1. Keywords for linuxrc

Keyword Value

netdevice Which network device to use for network setup
(Device used for BOOTP / DHCP requests)

server Which server to contact for source directory
(NFS Server)

serverdir Directory on NFS Server

hostip When empty, client sends BOOTP request, oth-
erwise client is configured with entered IP con-
figuration.

netmask Netmask

gateway Gateway

nameserver Nameserver

insmod Kernel modules to load.

autoyast Location of the the control file to be used for the
automatic installation, i.e autoy-
ast=http://192.168.2.1/profiles/

7.3. Invoking the Auto-Installation
process

71

Keyword Value

install Location of the installation directory, i.e. in-
stall=nfs://192.168.2.1/CDs/

instmode Installation mode, i.e. nfs, http etc. (Not needed
if install is set)

y2confirm even with <confirm>no</confirm> in the profile,
the confirm proposal comes up. This is available
since SUSE Linux 10.1 / SLES10

These variables and keywords will bring the system up to the point where YaST2 can take over with
the main control file. Currently, the source medium is automatically discovered, which in some
cases makes it possible to initiate the auto-install process without giving any instructions to linuxrc.

The traditional linuxrc configuration file (info) has the function of giving the client enough in-
formation about the installation server and the location of the sources. In most cases this file is not
needed; it is however needed in special network environments where DHCP / BOOTP are not used
or when special kernel modules have to be loaded.

All linuxrc keywords can be passed to linuxrc using the kernel command line. The command line
can for example also be set when creating network boot-able images or it can be passed to the kernel
using a specially configured DHCP server in combination with Etherboot or PXE.

The format of the special command line variable autoyast can be used as described in table “Com-
mand line variables for AutoYaST”

Table 7.2. Command line variables for AutoYaST

Command line variable Description

autoyast=default Default auto-installation option

autoyast=file://<path> Looks for control file in specified path (relative
to source root directory, i.e. file:///autoinst.xml if
in the top directory of a CD-ROM)

autoyast=device://<device>/<file> Looks for control file on a storage device. (only
device name needed without full path, i.e. /
dev/sda1 is wrong, instead use sda1)

autoyast=floppy://<path> Looks for control file in the floppy (Useful when
booting from CD). Since SLES10 SP1 and later
the fallback is looking on USB devices too

autoyast=nfs://<server>/<path> Looks for control file on <server>

autoyast=http://<server>/<path> Retrieves the control file from a web server us-
ing the HTTP protocol.

autoyast=https://<server>/<path> Retrieves the control file from a web server us-
ing HTTPS (encrypted connection) protocol
(possible since SL 10.1 and SLES10

autoyast=tftp://<server>/<path> Retrieve the control file with TFTP

autoyast=ftp://<server>/<path> Retrieve the control file with FTP

autoyast=usb://<path> (since SLES10 SP1) Retrieve the control file from USB devices
(autoyast will search on all USB devices it can
find)

Several scenarios for auto-installation are possible using different types of infrastructure and source
media. The simplest way is by using the source media from the SuSE Box. In that case you have
either a DVD with all SuSE packages or a set of CD-ROMs. To initiate the auto-installation process
however, the auto-installation command line variable should be entered at system boot-up and the
control file should be accessible to YaST2. The following list of scenarios explains how the control

7.3.1. Command line Options

72

file can be supplied and the setup needed for the auto-installation process to be successful.

• Using SuSE original CD-ROMs from SuSE Linux box:

To use the original CD-ROMs, you need a media with the control file, the control file can reside
on the following locations:

1. Floppy: Control file accessible via the autoyast=floppy option. YaST2 also searches upon
startup for a file named autoinst.xml. If such a file is found, YaST2 will switch into
auto-installation mode even if no special command line variables were supplied. (See “
Auto-installing a Single System ”)

2. Network: Control file accessible via the autoyast=nfs://.., autoyast=ftp://.. autoy-
ast=http://.. or autoyast=tftp://.. options.

• Using 'self-made' CD-ROMs:

In this case, you can include the control file on the CD-ROM for easy access (using the autoy-
ast=file:// option) or use one of the above mentioned methods used with the original SuSE CD-
ROMs.

Using CD-ROMs for autoinstallation, it is required to instruct the installer to use the CD-ROM
for installation and not try to find the installation files on the network. This can be accomplished
by adding the instmode=cd option to the kernel command line (this can be done by adding the
option to the isolinux.cfg file on the CD).

• Using NFS and Floppy, Network or CD-ROM for system boot-up.

This option is the most important one due to the fact that installations of PC farms are normally
done using NFS servers and other network services like BOOTP / DHCP . The control file can
reside in the following places:

1. Floppy/CD-ROM: Control file accessible via the autoyast=file://.. option.

2. Network: Control file accessible via the autoyast=http://.., autoyast=ftp://.., autoy-
ast=nfs://.. or autoyast=tftp://.. options.

Disabling netowrk and DHCP

To disable network during installations where network is not needed or not available,
for example when auto-installing from CD-ROMs use the linuxrc option netsetup to
set network configuration behavior. To disable network setup use netsetup=0

If autoyast=default is defined, YaST2 will look for a file named autoinst.xml in the following
three places:

1. The root directory of the floppy disk.

2. The root directory of the installation medium.

3. The root directory of the initial ram disk used to boot the system.

With all autoyast invocation options, excluding default, it is possible to specify the location of the
control file in the following ways:

1. Specify the exact location of the control file:

autoyast=http://192.168.1.1/control-files/client01.xml

7.3.1. Command line Options

73

2. Specify a directory where several control files are located

autoyast=http://192.168.1.1/control-files/

In this case the relevant control file is retrieved using the hex digit representation of the IP as
described below.

If only the path prefix variable is defined, YaST2 will fetch the control file from the specified loca-
tion in the following way:

1. First, it will search for the control file using its own IP address in upper case hexadecimal, e.g.
192.0.2.91 -> C000025B.

2. If that file is not found, it will remove one hex digit and try again. This action is repeated till
the file with the correct name is found. Ultimately, it will try looking for a file with the MAC
address of the clients as the file name (mac should have the following syntax: 0080C8F6484C)
and if not found a file named default (in lower case).

As an example, for 192.0.2.91, the HTTP client will try:

C000025B
C000025
C00002
C0000
C000
C00
C0
C
0080C8F6484C
default

in that order.

To determine the hex representation of the IP address of the client, use the utility called /
usr/sbin/gethostip available with the syslinux package.

Example 7.1. Determine HEX code for an IP address

/usr/sbin/gethostip 10.10.0.1
10.10.0.1 10.10.0.1 0A0A0001

7.3.2. Auto-installing a Single System
The easiest way to auto-install a system without any network connection is by using the standard
CD-ROMs that come in the SuSE Linux box. Using the CD-ROMs in combination with a floppy
disk lets you getting started with AutoYaST very fast and without spending much time configuring
installation server and network environments.

Create the control file and name it autoinst.xml. Copy the file autoinst.xml to a floppy by
either mounting the floppy or by using the mtools.

7.3.2. Auto-installing a Single System

74

mcopy autoinst.xml a:

7.3.3. Combining linuxrc info file with YaST2 control file
If you choose to pass information to linuxrc using the info file, it is possible to integrate the
keywords in the XML control file. In the case the file has to be accessible to linuxrc and has to be
named info.

Linuxrc will look for a string (start_linuxrc_conf in the control file which represents the beginning
of the file. If it is found, it will parse the content starting from that string and will finish when the
string end_linuxrc_conf is found. The options are stored in the control file in the following way:

Example 7.2. Linxurc options in the control file

....
<install>

....
<init>
<info_file>

<![CDATA[
#
Don't remove the following line:
start_linuxrc_conf
#
install: nfs://192.168.1.1/CDs/full-i386
textmode: 1
autoyast: file:///info

end_linuxrc_conf
Do not remove the above comment
#
]]>

</info_file>
</init>

......
</install>

....

Note that the autoyast keyword must point to the same file, i.e. if it is on a floppy, then the protocol
floppy has to be used. In other cases where the info file is stored in the initial ram-disk, the file op-
tion has to be used.

7.4. System Configuration
The system configuration during auto-installation can be seen as the most important part of the
whole process. Customizing a system to your environment needs is what makes an auto-installation
system attractive, not the installation part.

As you have seen in the previous chapters, almost anything can be configured automatically on the
target system. In addition to the pre-defined directives, you can always use post-scripts to change
other things in the system. Additionally you can change any system variables and if required, copy
complete configuration files into the target system.

7.4.1. Post-Install and System Configuration
The Post-Installation and the System Configuration are initiated directly after the last package is in-
stalled in the target system and is continued after the system has booted for the first time.

Before the system is booted for the first time, YaST2 writes all data collected during installation into
the system and finally it writes the boot loader in the specified location. In addition to these regular
tasks, which are also done when performing a regular installation, YaST2 executes the chroot-
scripts as specified in the control file. Note that these scripts are executed while the system is still
not mounted.

7.3.3. Combining linuxrc info file with
YaST2 control file

75

If a different kernel than the default is installed, a hard reboot will be required. A hard reboot can
also be forced during auto-installation, independent of the installed kernel. This can be accom-
plished using the reboot property of the general resource. (See General Options)

7.4.2. System Customization
Most of the system customization is done in the second stage of the installation. YaST2 provides
most of the important resources needed to bring up a system to a usable , general state. However,
you may have other requirements for the installed system. If the required customizations can't be
done using YaST2 resources, then the post-install scripts can be used to accomplish this task.

You can define an unlimited number of custom scripts in the control file either by editing the control
file or by using the configuration system.

7.4.2. System Customization

76

Chapter 8. Legacy and foreign
Configuration formats
8.1. Migration from YaST1 and ALICE

ALICE, SuSEs former auto-installation system was a system built around the auto-installation fea-
tures that were available with YaST1. In order to be able to use existing ALICE configuration files
and resources, a special option is provided in the configuration system will let you convert ALICE
configuration files into a control file readable by AutoYaST.

ALICE uses YaST1 for the installation of a Linux System. This is done by creating a boot medium
with the needed control file (info) from a set of configuration files maintained in a CVS reposit-
ory. The info file has the traditional format used with YaST1.

The system configuration is done almost entirely after the system is installed and is initiated using
the %post section of the ALICE RPM package.

8.1.1. ALICE modules
Each of ALICE modules perform certain tasks and requires one or multiple configuration files. The
modules are shell scripts that are invoked after installation of the machine to setup different services
on the client.

YaST2 offers an extensive and rich interface to the installed system which replaces most of the
modules that were available with ALICE The following is a list of all ALICE modules, their func-
tion and how their functionality is provided by YaST2 modules which are already available or
which can be integrated easily:

The modules prepare_alice and make_all provided the base and main scripts of all ALICE modules.
The module prepare_alice is called right after the initial installation process - which is done after
YaST1 has finished installation packages.

With YaST2, the alternative to these modules is part of the system and is not an addition or exten-
sion. This means that YaST2 configures the system in one single process and not, as with ALICE in
two different, independent steps.

The following table show how the result of some ALICE modules can be accomplished with YaST2

Table 8.1. ALICE vs. YaST2 modules

Module ALICE YaST2 Concerned files

User configuration Adding users is per-
formed without any
consistency checks.

Using YaST2 users
module

/etc/passwd

Group configuration Adding groups is per-
formed without any
consistency checks.

Using YaST2 users
module

/etc/group

Services X - /etc/services

Inetd X Using the inetd module /etc/inetd.conf

Syslog X /etc/syslog.conf

Lilo X X /etc/lilo.conf

SNMP X - /
etc/ucdsnm-
pd.conf

77

Module ALICE YaST2 Concerned files

Cron X - /etc/crontab

hosts X X /etc/hosts

Routing X X /etc/route.conf

Printer X X /etc/printcap

SSH X - /etc/ssh

Kernel modules X X /
etc/modules.conf

8.1.2. Other configuration options with YaST2 and ALICE
ALICE completed most of the configuration using the system configuration file /
etc/rc.config. This interface to the system does not exist anymore with new SuSE products.
Instead, configuration options are now available in /etc/sysconfig.

Entries in /etc/sysconfig can be easily set and modified using YaST2 and AutoYaST. For net-
work services it is recommended to use the relevant YaST2 modules dealing with networking ,
rather than modifying /etc/sysconfig/network directly.

8.2. Redhat Kickstart
The Configuration Management System offers an option for importing a foreign auto-installation
configuration file using the Kickstart system. To import a Kickstart file, you only need to enter the
path of the configuration file and decide how to handle the data, by either saving the result into a file
directly or by loading the resulting AutoYaST compatible control file into the Configuration Man-
agement System to add more configuration options available with SuSE. The following sections de-
scribe some limitations and issues to consider when importing from a foreign source:

8.2.1. Software selections and packages
It is not possible at the moment to import package selections and single package listing into AutoY-
aST. The packages will be added to the control file, but manual selection of the desired packages is
needed. The reason is that package groups and package names might differ depending on the source
distribution

8.2.2. User scripts
Kickstart offers two types of scripts, pre and post scripts. More scripts (>2) are not supported as in
AutoYaST. So it might be needed to split large scripts into smaller components depending on the
function to make such scripts manageable

8.1.2. Other configuration options
with YaST2 and ALICE

78

Appendix A. Handling Rules
The following figure illustrates how rules are handled and the processes of retrieval and merge.

Figure A.1. Rules Retrieval Process

79

80

Appendix B. Advanced Linuxrc
Options

Linuxrc is a program used for setting up the kernel for installation purposes. It allows the user to
load modules, start an installed system, a rescue system or an installation via YaST.

Linuxrc is designed to be as small as possible. Therefore, all needed programs are linked directly in-
to one binary. So there is no need for shared libraries in the initdisk.

Note

If you run Linuxrc on an installed system, it will work slightly different as it tries not
to destroy your installation. As a consequence you cannot test all features this way.

B.1. Passing parameters to Linuxrc
Unless Linuxrc is in manual mode it will look for an 'info' file in these locations: first /info on the
floppy disk and if that does not exsist for /info in the initrd. After that it parses the kernel com-
mand line for parameters. You may change the 'info' file Linuxrc reads using the info command
line parameter. If you don't want Linuxrc to read the kernel command line (say, because you need to
give a kernel parameter that accidentally is recognized by Linuxrc, too), use linuxrc=nocmdline.

Independend if the above, Linuxrc will always look for and parse a file /linuxrc.config. You
can use this file to change default values, if you need to. But in general, use the info file instead.
Note that /linuxrc.config is read before any 'info' file and even in manual mode.

B.2. 'info' file format
Lines starting with '#' are comments, valid entries are of the form

key: value

Note that value extends to the end of the line and so may contain spaces. key is matched case insens-
itive.

You can use the same key - value pairs on the kernel command line using the syntax key=value
Lines that don't have the form described above are ignored.

Valid keys are (values given are just examples)

Table B.1. Advanced linuxrc keywords

Keyword/Value Description

Language: de_DE set the language

Keytable: de-lat1-nd load this keytable

Display: Color|Mono|Alt set the menu color scheme

Install: nfs://server/install/8.0-i386 install via NFS from server (note: you can give
username, password etc. in the URL, too)

InstMode: cd|hd|nfs|smb|ftp|http|tftp set installation mode

HostIP: 10.10.0.2 the client ip address

Netmask: 255.255.0.0 network mask

Gateway: 10.10.0.1 gateway

81

Keyword/Value Description

Server: 10.10.0.1 installation server address

Nameserver: 10.10.0.1 nameserver

Proxy: 10.10.0.1 proxy (either ftp or http)

ProxyPort: 10.10.0.1 proxy port

Partition: hda1 partition with install sources for hard disk install

Serverdir: /install/8.0-i386 base directory of the installation sources

Netdevice: eth0 network interface to use

BOOTPWait: 5 sleep 5 seconds between network activation and
starting bootp

BOOTPTimeout: 10 10 seconds timeout for BOOTP requests

DHCPTimeout: 60 60 seconds timeout for DHCP requests

TFTPTimeout: 10 10 seconds timeout for TFTP connection

ForceRootimage: 0|1 load the installation system into ramdisk

Textmode: 0|1 start YaST in text mode

Username: name set user name (e.g. for FTP install)

Password: password set password (e.g. for FTP install)

WorkDomain: domain set work domain for SMB install

ForceInsmod: 0|1 use '-f' option when running insmod

DHCP: 0|1 start DHCP daemon now, but see UseDHCP

UseDHCP: 0|1 use DHCP instead of BOOTP (DHCP is default)

MemLimit: 10000 ask for swap if free memory drops below 10000
kB

MemYaST: 20000 run YaST in text mode if free memory is below
20000 kB

MemYaSTText: 10000 ask for swap before starting YaST if free
memory is below 10000 kB

MemModules: 20000 delete all modules before starting YaST if free
memory is below 20000 kB

MemLoadImage: 50000 load installation system into ramdisk if free
memory is above 50000 kB

Manual: 0|1 start Linuxrc in manual mode

NoPCMCIA: 0|1 don't start card manager

Domain: zap.de set domain name (used for name server lookups)

RootImage: /suse/images/root installation system image

RescueImage: /suse/images/rescue rescue system image

InstallDir: /suse/inst-sys installation system

Rescue: 1|nfs://server/dir load rescue system; the URL variant specifies
the location of the rescue image explicitly

AutoYaST: ftp://autoyastfile location of autoinstall file; activates autoinstall
mode

VNC: 0|1 setup VNC server

VNCPassword: password sets VNC server password

UseSSH: 0|1 setup SSH server

SSHPassword: password sets SSH server password (this will not be the fi-
nal root password!)

AddSwap: 0|3|/dev/hda5 if 0, do never ask for swap; if the argument is a
positive number n, activate the n'th swap parti-
tion; is the argument is a partition name, activate

B.2. 'info' file format

82

Keyword/Value Description

this swap partition

Exec: command run command

USBWait: 4 wait 4 seconds after loading USB modules

Insmod: module params load this module

Loghost: 10.10.0.22 Enable remove logging via syslog

y2confirm overrides the confirm parameter in a profile and
pops up the confirm proposal (available since
SUSE Linux 10.1 / SLES10)

B.3. Advanced Network Setup
The netsetup keyword allows advanced network configurations and enables dialogs to setup the net-
work where required.

• netsetup=1

the normal network setup questions

• netsetup=xxx,yyy

just xxx and yyy

• netsetup=+xxx,-yyy

default, additionally xxx, but not yyy

xxx could have the following values: dhcp, hostip, gateway, netmask, nameserver. nameserverN
asks for N nameservers (max. 4).

For example, the following can be entered on the command line:

netsetup=-dhcp,+nameserver3

B.3. Advanced Network Setup

83

84

	AutoYaST
	Table of Contents
	Chapter 1. Introduction
	1.1. Availability
	1.2. Motivation
	1.3. Overview and Concept

	Chapter 2. The Control File
	2.1. Introduction
	2.2. Format
	2.3. Structure
	2.3.1. Resources and Properties
	2.3.2. Nested Resources
	2.3.3. Attributes

	2.4. The XML Document Type Definition (DTD)
	2.4.1. Introduction
	2.4.2. Example DTD

	Chapter 3. Creating A Control File
	3.1. Collect information
	3.2. Using the Configuration Management System
	3.2.1. Creating a new Profile
	3.2.2. Import of Legacy and Foreign Configuration Files

	3.3. Creating/Editing a Control File Manually
	3.4. Creating a Profile (control file) via Script with XSLT

	Chapter 4. Configuration and Installation Options
	4.1. General Options
	4.2. Reporting
	4.3. The Boot loader
	4.4. Partitioning
	4.4.1. drive configuration
	4.4.2. partition configuration
	4.4.3. raid options
	4.4.4. Automated Partitioning
	4.4.5. Advanced Partitioning features
	4.4.5.1. Wipe out partition table
	4.4.5.2. Mount Options
	4.4.5.3. Creating Primary and Extended Partitions
	4.4.5.4. Keeping Specific Partitions

	4.4.6. Using existing mount table (fstab)
	4.4.7. Logical Volume Manager (LVM)
	4.4.8. Enterprise Volume Management System (EVMS)
	4.4.9. Software RAID

	4.5. Software
	4.5.1. Package Selections until SUSE Linux 10.1 (not SLES10)
	4.5.2. Package Selections with patterns (SLES10 and SUSE Linux 10.2)
	4.5.3. Custom Package Selections
	4.5.4. Installing additional and customized Packages
	4.5.5. Kernel packages
	4.5.6. Removing automatically selected packages

	4.6. Services and Run-levels
	4.7. Network configuration
	4.7.1. Network devices, DNS and Routing.
	4.7.2. Proxy
	4.7.3. (X)Inetd
	4.7.4. NIS
	4.7.5. LDAP client
	4.7.6. NFS Client and Server
	4.7.7. NTP Client

	4.8. Mail Configuration (Sendmail or Postfix)
	4.9. Security settings
	4.9.1. Password Settings Options
	4.9.2. Boot Settings
	4.9.3. Login Settings
	4.9.4. New user settings (useradd settings)

	4.10. Monitor and X11 Configuration
	4.11. Users
	4.12. Custom user scripts
	4.12.1. Pre-Install Scripts
	4.12.2. Chroot environment scripts
	4.12.3. Post-Install Scripts
	4.12.4. Init Scripts
	4.12.5. Script example

	4.13. System variables (Sysconfig)
	4.14. Adding complete configurations
	4.15. Miscellaneous hardware and system components
	4.15.1. Printer
	4.15.2. Sound devices

	4.16. Ask the user for values during installation

	Chapter 5. Network Based Installation
	5.1. Configuration Server
	5.1.1. HTTP Repository
	5.1.2. NFS Repository
	5.1.3. TFTP Repository

	Chapter 6. Rules and Classes
	6.1. Rule based auto-installation
	6.1.1. Rules File explained
	6.1.2. Custom Rules
	6.1.3. Match Types for rules
	6.1.4. Combine Attributes
	6.1.5. Rules file structure
	6.1.6. Predefined System Attributes

	6.2. Classes
	6.3. Mixing Rules and Classes
	6.4. The merging process of Rules and Classes

	Chapter 7. The Auto-Installation Process
	7.1. Introduction
	7.1.1. X11 Interface
	7.1.2. Serial console
	7.1.3. Text based YaST2-Installation

	7.2. Choosing the right Boot Medium
	7.2.1. Booting from a floppy
	7.2.2. Booting from CD-ROM
	7.2.3. Booting via PXE over the network

	7.3. Invoking the Auto-Installation process
	7.3.1. Command line Options
	7.3.2. Auto-installing a Single System
	7.3.3. Combining linuxrc info file with YaST2 control file

	7.4. System Configuration
	7.4.1. Post-Install and System Configuration
	7.4.2. System Customization

	Chapter 8. Legacy and foreign Configuration formats
	8.1. Migration from YaST1 and ALICE
	8.1.1. ALICE modules
	8.1.2. Other configuration options with YaST2 and ALICE

	8.2. Redhat Kickstart
	8.2.1. Software selections and packages
	8.2.2. User scripts

	Appendix A. Handling Rules
	Appendix B. Advanced Linuxrc Options
	B.1. Passing parameters to Linuxrc
	B.2. 'info' file format
	B.3. Advanced Network Setup

